Abstract:In response to the substantial energy consumption in buildings, the Japanese government initiated the BI-Tech (Behavioral Insights X Technology) project in 2019, aimed at promoting voluntary energy-saving behaviors through the utilization of AI and IoT technologies. Our study aimed at small and medium-sized office buildings introduces a cost-effective IoT-based BI-Tech system, utilizing the Raspberry Pi 4B+ platform for real-time monitoring of indoor thermal conditions and air conditioner (AC) set-point temperature. Employing machine learning and image recognition, the system analyzes data to calculate the PMV index and predict energy consumption changes due to temperature adjustments. The integration of mobile and desktop applications conveys this information to users, encouraging energy-efficient behavior modifications. The machine learning model achieved with an R2 value of 97%, demonstrating the system's efficiency in promoting energy-saving habits among users.
Abstract:Transient noise appearing in the data from gravitational-wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational-wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time-frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised-learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised-learning architecture of the previous study is examined and reported.
Abstract:We model multi-modality in multi-objective optimization problems and apply this to generate benchmarking problems. In the model, the mode is based on the singularity of the objective functions.