Abstract:Recently, many convolutional neural networks (CNNs) for classification by time domain data of multisignals have been developed. Although some signals are important for correct classification, others are not. When data that do not include important signals for classification are taken as the CNN input layer, the calculation, memory, and data collection costs increase. Therefore, identifying and eliminating nonimportant signals from the input layer are important. In this study, we proposed features gradient-based signals selection algorithm (FG-SSA), which can be used for finding and removing nonimportant signals for classification by utilizing features gradient obtained by the calculation process of grad-CAM. When we define N as the number of signals, the computational complexity of the proposed algorithm is linear time O(N), that is, it has a low calculation cost. We verified the effectiveness of the algorithm using the OPPORTUNITY Activity Recognition dataset, which is an open dataset comprising acceleration signals of human activities. In addition, we checked the average 6.55 signals from a total of 15 acceleration signals (five triaxial sensors) that were removed by FG-SSA while maintaining high generalization scores of classification. Therefore, the proposed algorithm FG-SSA has an effect on finding and removing signals that are not important for CNN-based classification.
Abstract:Transient noise appearing in the data from gravitational-wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational-wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time-frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised-learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised-learning architecture of the previous study is examined and reported.