Abstract:We introduce a technique to enhance the reliability of gravitational wave parameter estimation results produced by machine learning. We develop two independent machine learning models based on the Vision Transformer to estimate effective spin and chirp mass from spectrograms of gravitational wave signals from binary black hole mergers. To enhance the reliability of these models, we utilize attention maps to visualize the areas our models focus on when making predictions. This approach enables demonstrating that both models perform parameter estimation based on physically meaningful information. Furthermore, by leveraging these attention maps, we demonstrate a method to quantify the impact of glitches on parameter estimation. We show that as the models focus more on glitches, the parameter estimation results become more strongly biased. This suggests that attention maps could potentially be used to distinguish between cases where the results produced by the machine learning model are reliable and cases where they are not.
Abstract:Transient noise appearing in the data from gravitational-wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational-wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time-frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised-learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised-learning architecture of the previous study is examined and reported.