Abstract:The design (shape) of a robot is usually decided before the control is implemented. This might limit how well the design is adapted to a task, as the suitability of the design is given by how well the robot performs in the task, which requires both a design and a controller. The co-optimization or simultaneous optimization of the design and control of robots addresses this limitation by producing a design and control that are both adapted to the task. In this paper, we investigate some of the challenges inherent in the co-optimization of design and control. We show that retraining the controller of a robot with additional resources after the co-optimization process terminates significantly improves the robot's performance. In addition, we demonstrate that the resources allocated to training the controller for each design influence the design complexity, where simpler designs are associated with lower training budgets. The experimentation is conducted in four publicly available simulation environments for co-optimization of design and control, making the findings more applicable to the general case. The results presented in this paper hope to guide other practitioners in the co-optimization of design and control of robots.
Abstract:Robots operating in the real world will experience a range of different environments and tasks. It is essential for the robot to have the ability to adapt to its surroundings to work efficiently in changing conditions. Evolutionary robotics aims to solve this by optimizing both the control and body (morphology) of a robot, allowing adaptation to internal, as well as external factors. Most work in this field has been done in physics simulators, which are relatively simple and not able to replicate the richness of interactions found in the real world. Solutions that rely on the complex interplay between control, body, and environment are therefore rarely found. In this paper, we rely solely on real-world evaluations and apply evolutionary search to yield combinations of morphology and control for our mechanically self-reconfiguring quadruped robot. We evolve solutions on two very different physical surfaces and analyze the results in terms of both control and morphology. We then transition to two previously unseen surfaces to demonstrate the generality of our method. We find that the evolutionary search adapts both control and body to the different physical environments, yielding significantly different morphology-controller configurations. Moreover, we observe that the solutions found by our method work well on previously unseen terrains.
Abstract:Robots are used in more and more complex environments, and are expected to be able to adapt to changes and unknown situations. The easiest and quickest way to adapt is to change the control system of the robot, but for increasingly complex environments one should also change the body of the robot -- its morphology -- to better fit the task at hand. The theory of Embodied Cognition states that control is not the only source of cognition, and the body, environment, interaction between these and the mind all contribute as cognitive resources. Taking advantage of these concepts could lead to improved adaptivity, robustness, and versatility, however, executing these concepts on real-world robots puts additional requirements on the hardware and has several challenges when compared to learning just control. In contrast to the majority of work in Evolutionary Robotics, Eiben argues for real-world experiments in his `Grand Challenges for Evolutionary Robotics'. This requires robust hardware platforms that are capable of repeated experiments which should at the same time be flexible when unforeseen demands arise. In this paper, we introduce our unique robot platform with self-adaptive morphology. We discuss the challenges we have faced when designing it, and the lessons learned from real-world testing and learning.
Abstract:Overcoming robotics challenges in the real world requires resilient control systems capable of handling a multitude of environments and unforeseen events. Evolutionary optimization using simulations is a promising way to automatically design such control systems, however, if the disparity between simulation and the real world becomes too large, the optimization process may result in dysfunctional real-world behaviors. In this paper, we address this challenge by considering embodied phase coordination in the evolutionary optimization of a quadruped robot controller based on central pattern generators. With this method, leg phases, and indirectly also inter-leg coordination, are influenced by sensor feedback.By comparing two very similar control systems we gain insight into how the sensory feedback approach affects the evolved parameters of the control system, and how the performances differs in simulation, in transferal to the real world, and to different real-world environments. We show that evolution enables the design of a control system with embodied phase coordination which is more complex than previously seen approaches, and that this system is capable of controlling a real-world multi-jointed quadruped robot.The approach reduces the performance discrepancy between simulation and the real world, and displays robustness towards new environments.
Abstract:If robots are to become ubiquitous, they will need to be able to adapt to complex and dynamic environments. Robots that can adapt their bodies while deployed might be flexible and robust enough to meet this challenge. Previous work on dynamic robot morphology has focused on simulation, combining simple modules, or switching between locomotion modes. Here, we present an alternative approach: a self-reconfigurable morphology that allows a single four-legged robot to actively adapt the length of its legs to different environments. We report the design of our robot, as well as the results of a study that verifies the performance impact of self-reconfiguration. This study compares three different control and morphology pairs under different levels of servo supply voltage in the lab. We also performed preliminary tests in different uncontrolled outdoor environments to see if changes to the external environment supports our findings in the lab. Our results show better performance with an adaptable body, lending evidence to the value of self-reconfiguration for quadruped robots.
Abstract:For robots to handle the numerous factors that can affect them in the real world, they must adapt to changes and unexpected events. Evolutionary robotics tries to solve some of these issues by automatically optimizing a robot for a specific environment. Most of the research in this field, however, uses simplified representations of the robotic system in software simulations. The large gap between performance in simulation and the real world makes it challenging to transfer the resulting robots to the real world. In this paper, we apply real world multi-objective evolutionary optimization to optimize both control and morphology of a four-legged mammal-inspired robot. We change the supply voltage of the system, reducing the available torque and speed of all joints, and study how this affects both the fitness, as well as the morphology and control of the solutions. In addition to demonstrating that this real-world evolutionary scheme for morphology and control is indeed feasible with relatively few evaluations, we show that evolution under the different hardware limitations results in comparable performance for low and moderate speeds, and that the search achieves this by adapting both the control and the morphology of the robot.
Abstract:Evolutionary robotics has aimed to optimize robot control and morphology to produce better and more robust robots. Most previous research only addresses optimization of control, and does this only in simulation. We have developed a four-legged mammal-inspired robot that features a self-reconfiguring morphology. In this paper, we discuss the possibilities opened up by being able to efficiently do experiments on a changing morphology in the real world. We discuss present challenges for such a platform and potential experimental designs that could unlock new discoveries. Finally, we place our robot in its context within general developments in the field of evolutionary robotics, and consider what advances the future might hold.