Abstract:In this paper, we consider a K-user interference channel where interference among the users is neither too strong nor too weak, a scenario that is relatively underexplored in the literature. We propose a novel deep learning-based approach to design the encoder and decoder functions that aim to maximize the sumrate of the interference channel for discrete constellations. We first consider the MaxSINR algorithm, a state-of-the-art linear scheme for Gaussian inputs, as the baseline and then propose a modified version of the algorithm for discrete inputs. We then propose a neural network-based approach that learns a constellation mapping with the objective of maximizing the sumrate. We provide numerical results to show that the constellations learned by the neural network-based approach provide enhanced alignments, not just in beamforming directions but also in terms of the effective constellation at the receiver, thereby leading to improved sum-rate performance.
Abstract:Most of our lives are conducted in the cyberspace. The human notion of privacy translates into a cyber notion of privacy on many functions that take place in the cyberspace. This article focuses on three such functions: how to privately retrieve information from cyberspace (privacy in information retrieval), how to privately leverage large-scale distributed/parallel processing (privacy in distributed computing), and how to learn/train machine learning models from private data spread across multiple users (privacy in distributed (federated) learning). The article motivates each privacy setting, describes the problem formulation, summarizes breakthrough results in the history of each problem, and gives recent results and discusses some of the major ideas that emerged in each field. In addition, the cross-cutting techniques and interconnections between the three topics are discussed along with a set of open problems and challenges.