University of Strathclyde
Abstract:This paper presents a data processing pipeline designed to extract information from the hyperspectral signature of unknown space objects. The methodology proposed in this paper determines the material composition of space objects from single pixel images. Two techniques are used for material identification and classification: one based on machine learning and the other based on a least square match with a library of known spectra. From this information, a supervised machine learning algorithm is used to classify the object into one of several categories based on the detection of materials on the object. The behaviour of the material classification methods is investigated under non-ideal circumstances, to determine the effect of weathered materials, and the behaviour when the training library is missing a material that is present in the object being observed. Finally the paper will present some preliminary results on the identification and classification of space objects.
Abstract:Hyperspectral Imaging is a crucial tool in remote sensing which captures far more spectral information than standard color images. However, the increase in spectral information comes at the cost of spatial resolution. Super-resolution is a popular technique where the goal is to generate a high-resolution version of a given low-resolution input. The majority of modern super-resolution approaches use convolutional neural networks. However, convolution itself is a linear operation and the networks rely on the non-linear activation functions after each layer to provide the necessary non-linearity to learn the complex underlying function. This means that convolutional neural networks tend to be very deep to achieve the desired results. Recently, self-organized operational neural networks have been proposed that aim to overcome this limitation by replacing the convolutional filters with learnable non-linear functions through the use of MacLaurin series expansions. This work focuses on extending the convolutional filters of a popular super-resolution model to more powerful operational filters to enhance the model performance on hyperspectral images. We also investigate the effects that residual connections and different normalization types have on this type of enhanced network. Despite having fewer parameters than their convolutional network equivalents, our results show that operational neural networks achieve superior super-resolution performance on small hyperspectral image datasets.
Abstract:The recently described pushframe imager, a parallelized single pixel camera capturing with a pushbroom-like motion, is intrinsically suited to both remote-sensing and compressive sampling. It optically applies a 2D mask to the imaged scene, before performing light integration along a single spatial axis, but previous work has not made use of the architecture's potential for taking measurements sparsely. In this paper we develop a strongly performing static binarized noiselet compressive sampling mask design, tailored to pushframe hardware, allowing both a single exposure per motion time-step, and retention of 2D correlations in the scene. Results from simulated and real-world captures are presented, with performance shown to be similar to that of immobile -- and hence inappropriate for satellite use -- whole-scene imagers. A particular feature of our sampling approach is that the degree of compression can be varied without altering the pattern, and we demonstrate the utility of this for efficiently storing and transmitting multi-spectral images.
Abstract:Deep neural networks have been successfully used in diverse emerging domains to solve real world complex problems with may more deep learning(DL) architectures, being developed to date. To achieve these state-of-the-art performances, the DL architectures use activation functions (AFs), to perform diverse computations between the hidden layers and the output layers of any given DL architecture. This paper presents a survey on the existing AFs used in deep learning applications and highlights the recent trends in the use of the activation functions for deep learning applications. The novelty of this paper is that it compiles majority of the AFs used in DL and outlines the current trends in the applications and usage of these functions in practical deep learning deployments against the state-of-the-art research results. This compilation will aid in making effective decisions in the choice of the most suitable and appropriate activation function for any given application, ready for deployment. This paper is timely because most research papers on AF highlights similar works and results while this paper will be the first, to compile the trends in AF applications in practice against the research results from literature, found in deep learning research to date.