Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Large language models (LLMs) have evolved from simple chatbots into autonomous agents capable of performing complex tasks such as editing production code, orchestrating workflows, and taking higher-stakes actions based on untrusted inputs like webpages and emails. These capabilities introduce new security risks that existing security measures, such as model fine-tuning or chatbot-focused guardrails, do not fully address. Given the higher stakes and the absence of deterministic solutions to mitigate these risks, there is a critical need for a real-time guardrail monitor to serve as a final layer of defense, and support system level, use case specific safety policy definition and enforcement. We introduce LlamaFirewall, an open-source security focused guardrail framework designed to serve as a final layer of defense against security risks associated with AI Agents. Our framework mitigates risks such as prompt injection, agent misalignment, and insecure code risks through three powerful guardrails: PromptGuard 2, a universal jailbreak detector that demonstrates clear state of the art performance; Agent Alignment Checks, a chain-of-thought auditor that inspects agent reasoning for prompt injection and goal misalignment, which, while still experimental, shows stronger efficacy at preventing indirect injections in general scenarios than previously proposed approaches; and CodeShield, an online static analysis engine that is both fast and extensible, aimed at preventing the generation of insecure or dangerous code by coding agents. Additionally, we include easy-to-use customizable scanners that make it possible for any developer who can write a regular expression or an LLM prompt to quickly update an agent's security guardrails.




Abstract:We are releasing a new suite of security benchmarks for LLMs, CYBERSECEVAL 3, to continue the conversation on empirically measuring LLM cybersecurity risks and capabilities. CYBERSECEVAL 3 assesses 8 different risks across two broad categories: risk to third parties, and risk to application developers and end users. Compared to previous work, we add new areas focused on offensive security capabilities: automated social engineering, scaling manual offensive cyber operations, and autonomous offensive cyber operations. In this paper we discuss applying these benchmarks to the Llama 3 models and a suite of contemporaneous state-of-the-art LLMs, enabling us to contextualize risks both with and without mitigations in place.