Heidelberg University
Abstract:Preference Optimization (PO) techniques are currently one of the state of the art techniques for fine-tuning large language models (LLMs) on pairwise preference feedback from human annotators. However, in machine translation, this sort of feedback can be difficult to solicit. Additionally, Kreutzer et al. (2018) have shown that, for machine translation, pairwise preferences are less reliable than other forms of human feedback, such as 5-point ratings. We examine post-edits to see if they can be a source of reliable human preferences by construction. In PO, a human annotator is shown sequences $s_1$ and $s_2$ and asked for a preference judgment, %$s_1 > s_2$; while for post-editing, editors \emph{create} $s_1$ and know that it should be better than $s_2$. We attempt to use these implicit preferences for PO and show that it helps the model move towards post-edit-like hypotheses and away from machine translation-like hypotheses. Furthermore, we show that best results are obtained by pre-training the model with supervised fine-tuning (SFT) on post-edits in order to promote post-edit-like hypotheses to the top output ranks.
Abstract:Machine learning for early syndrome diagnosis aims to solve the intricate task of predicting a ground truth label that most often is the outcome (effect) of a medical consensus definition applied to observed clinical measurements (causes), given clinical measurements observed several hours before. Instead of focusing on the prediction of the future effect, we propose to directly predict the causes via time series forecasting (TSF) of clinical variables and determine the effect by applying the gold standard consensus definition to the forecasted values. This method has the invaluable advantage of being straightforwardly interpretable to clinical practitioners, and because model training does not rely on a particular label anymore, the forecasted data can be used to predict any consensus-based label. We exemplify our method by means of long-term TSF with Transformer models, with a focus on accurate prediction of sparse clinical variables involved in the SOFA-based Sepsis-3 definition and the new Simplified Acute Physiology Score (SAPS-II) definition. Our experiments are conducted on two datasets and show that contrary to recent proposals which advocate set function encoders for time series and direct multi-step decoders, best results are achieved by a combination of standard dense encoders with iterative multi-step decoders. The key for success of iterative multi-step decoding can be attributed to its ability to capture cross-variate dependencies and to a student forcing training strategy that teaches the model to rely on its own previous time step predictions for the next time step prediction.
Abstract:While large language models (LLMs) pre-trained on massive amounts of unpaired language data have reached the state-of-the-art in machine translation (MT) of general domain texts, post-editing (PE) is still required to correct errors and to enhance term translation quality in specialized domains. In this paper we present a pilot study of enhancing translation memories (TM) produced by PE (source segments, machine translations, and reference translations, henceforth called PE-TM) for the needs of correct and consistent term translation in technical domains. We investigate a light-weight two-step scenario where, at inference time, a human translator marks errors in the first translation step, and in a second step a few similar examples are extracted from the PE-TM to prompt an LLM. Our experiment shows that the additional effort of augmenting translations with human error markings guides the LLM to focus on a correction of the marked errors, yielding consistent improvements over automatic PE (APE) and MT from scratch.
Abstract:We demonstrate a validity problem of machine learning in the vital application area of disease diagnosis in medicine. It arises when target labels in training data are determined by an indirect measurement, and the fundamental measurements needed to determine this indirect measurement are included in the input data representation. Machine learning models trained on this data will learn nothing else but to exactly reconstruct the known target definition. Such models show perfect performance on similarly constructed test data but will fail catastrophically on real-world examples where the defining fundamental measurements are not or only incompletely available. We present a general procedure allowing identification of problematic datasets and black-box machine learning models trained on them, and exemplify our detection procedure on the task of early prediction of sepsis.
Abstract:We present Text-to-OverpassQL, a task designed to facilitate a natural language interface for querying geodata from OpenStreetMap (OSM). The Overpass Query Language (OverpassQL) allows users to formulate complex database queries and is widely adopted in the OSM ecosystem. Generating Overpass queries from natural language input serves multiple use-cases. It enables novice users to utilize OverpassQL without prior knowledge, assists experienced users with crafting advanced queries, and enables tool-augmented large language models to access information stored in the OSM database. In order to assess the performance of current sequence generation models on this task, we propose OverpassNL, a dataset of 8,352 queries with corresponding natural language inputs. We further introduce task specific evaluation metrics and ground the evaluation of the Text-to-OverpassQL task by executing the queries against the OSM database. We establish strong baselines by finetuning sequence-to-sequence models and adapting large language models with in-context examples. The detailed evaluation reveals strengths and weaknesses of the considered learning strategies, laying the foundations for further research into the Text-to-OverpassQL task.
Abstract:End-to-end automatic speech translation (AST) relies on data that combines audio inputs with text translation outputs. Previous work used existing large parallel corpora of transcriptions and translations in a knowledge distillation (KD) setup to distill a neural machine translation (NMT) into an AST student model. While KD allows using larger pretrained models, the reliance of previous KD approaches on manual audio transcripts in the data pipeline restricts the applicability of this framework to AST. We present an imitation learning approach where a teacher NMT system corrects the errors of an AST student without relying on manual transcripts. We show that the NMT teacher can recover from errors in automatic transcriptions and is able to correct erroneous translations of the AST student, leading to improvements of about 4 BLEU points over the standard AST end-to-end baseline on the English-German CoVoST-2 and MuST-C datasets, respectively. Code and data are publicly available.\footnote{\url{https://github.com/HubReb/imitkd_ast/releases/tag/v1.1}}
Abstract:Supervised learning in Neural Machine Translation (NMT) typically follows a teacher forcing paradigm where reference tokens constitute the conditioning context in the model's prediction, instead of its own previous predictions. In order to alleviate this lack of exploration in the space of translations, we present a simple extension of standard maximum likelihood estimation by a contrastive marking objective. The additional training signals are extracted automatically from reference translations by comparing the system hypothesis against the reference, and used for up/down-weighting correct/incorrect tokens. The proposed new training procedure requires one additional translation pass over the training set per epoch, and does not alter the standard inference setup. We show that training with contrastive markings yields improvements on top of supervised learning, and is especially useful when learning from postedits where contrastive markings indicate human error corrections to the original hypotheses. Code is publicly released.
Abstract:Incremental decision making in real-world environments is one of the most challenging tasks in embodied artificial intelligence. One particularly demanding scenario is Vision and Language Navigation~(VLN) which requires visual and natural language understanding as well as spatial and temporal reasoning capabilities. The embodied agent needs to ground its understanding of navigation instructions in observations of a real-world environment like Street View. Despite the impressive results of LLMs in other research areas, it is an ongoing problem of how to best connect them with an interactive visual environment. In this work, we propose VELMA, an embodied LLM agent that uses a verbalization of the trajectory and of visual environment observations as contextual prompt for the next action. Visual information is verbalized by a pipeline that extracts landmarks from the human written navigation instructions and uses CLIP to determine their visibility in the current panorama view. We show that VELMA is able to successfully follow navigation instructions in Street View with only two in-context examples. We further finetune the LLM agent on a few thousand examples and achieve 25%-30% relative improvement in task completion over the previous state-of-the-art for two datasets.
Abstract:Reliability of machine learning evaluation -- the consistency of observed evaluation scores across replicated model training runs -- is affected by several sources of nondeterminism which can be regarded as measurement noise. Current tendencies to remove noise in order to enforce reproducibility of research results neglect inherent nondeterminism at the implementation level and disregard crucial interaction effects between algorithmic noise factors and data properties. This limits the scope of conclusions that can be drawn from such experiments. Instead of removing noise, we propose to incorporate several sources of variance, including their interaction with data properties, into an analysis of significance and reliability of machine learning evaluation, with the aim to draw inferences beyond particular instances of trained models. We show how to use linear mixed effects models (LMEMs) to analyze performance evaluation scores, and to conduct statistical inference with a generalized likelihood ratio test (GLRT). This allows us to incorporate arbitrary sources of noise like meta-parameter variations into statistical significance testing, and to assess performance differences conditional on data properties. Furthermore, a variance component analysis (VCA) enables the analysis of the contribution of noise sources to overall variance and the computation of a reliability coefficient by the ratio of substantial to total variance.
Abstract:Data augmentation is a technique to generate new training data based on existing data. We evaluate the simple and cost-effective method of concatenating the original data examples to build new training instances. Continued training with such augmented data is able to improve off-the-shelf Transformer and Conformer models that were optimized on the original data only. We demonstrate considerable improvements on the LibriSpeech-960h test sets (WER 2.83 and 6.87 for test-clean and test-other), which carry over to models combined with shallow fusion (WER 2.55 and 6.27). Our method of continued training also leads to improvements of up to 0.9 WER on the ASR part of CoVoST-2 for four non English languages, and we observe that the gains are highly dependent on the size of the original training data. We compare different concatenation strategies and found that our method does not need speaker information to achieve its improvements. Finally, we demonstrate on two datasets that our methods also works for speech translation tasks.