Abstract:In the vast landscape of visualization research, Dimensionality Reduction (DR) and graph analysis are two popular subfields, often essential to most visual data analytics setups. DR aims to create representations to support neighborhood and similarity analysis on complex, large datasets. Graph analysis focuses on identifying the salient topological properties and key actors within networked data, with specialized research on investigating how such features could be presented to the user to ease the comprehension of the underlying structure. Although these two disciplines are typically regarded as disjoint subfields, we argue that both fields share strong similarities and synergies that can potentially benefit both. Therefore, this paper discusses and introduces a unifying framework to help bridge the gap between DR and graph (drawing) theory. Our goal is to use the strongly math-grounded graph theory to improve the overall process of creating DR visual representations. We propose how to break the DR process into well-defined stages, discussing how to match some of the DR state-of-the-art techniques to this framework and presenting ideas on how graph drawing, topology features, and some popular algorithms and strategies used in graph analysis can be employed to improve DR topology extraction, embedding generation, and result validation. We also discuss the challenges and identify opportunities for implementing and using our framework, opening directions for future visualization research.
Abstract:In personalized recommender systems, embeddings are often used to encode customer actions and items, and retrieval is then performed in the embedding space using approximate nearest neighbor search. However, this approach can lead to two challenges: 1) user embeddings can restrict the diversity of interests captured and 2) the need to keep them up-to-date requires an expensive, real-time infrastructure. In this paper, we propose a method that overcomes these challenges in a practical, industrial setting. The method dynamically updates customer profiles and composes a feed every two minutes, employing precomputed embeddings and their respective similarities. We tested and deployed this method to personalise promotional items at Bol, one of the largest e-commerce platforms of the Netherlands and Belgium. The method enhanced customer engagement and experience, leading to a significant 4.9% uplift in conversions.
Abstract:Data features and class probabilities are two main perspectives when, e.g., evaluating model results and identifying problematic items. Class probabilities represent the likelihood that each instance belongs to a particular class, which can be produced by probabilistic classifiers or even human labeling with uncertainty. Since both perspectives are multi-dimensional data, dimensionality reduction (DR) techniques are commonly used to extract informative characteristics from them. However, existing methods either focus solely on the data feature perspective or rely on class probability estimates to guide the DR process. In contrast to previous work where separate views are linked to conduct the analysis, we propose a novel approach, class-constrained t-SNE, that combines data features and class probabilities in the same DR result. Specifically, we combine them by balancing two corresponding components in a cost function to optimize the positions of data points and iconic representation of classes -- class landmarks. Furthermore, an interactive user-adjustable parameter balances these two components so that users can focus on the weighted perspectives of interest and also empowers a smooth visual transition between varying perspectives to preserve the mental map. We illustrate its application potential in model evaluation and visual-interactive labeling. A comparative analysis is performed to evaluate the DR results.