Abstract:We consider the challenging problem of audio to animated video generation. We propose a novel method OneShotAu2AV to generate an animated video of arbitrary length using an audio clip and a single unseen image of a person as an input. The proposed method consists of two stages. In the first stage, OneShotAu2AV generates the talking-head video in the human domain given an audio and a person's image. In the second stage, the talking-head video from the human domain is converted to the animated domain. The model architecture of the first stage consists of spatially adaptive normalization based multi-level generator and multiple multilevel discriminators along with multiple adversarial and non-adversarial losses. The second stage leverages attention based normalization driven GAN architecture along with temporal predictor based recycle loss and blink loss coupled with lipsync loss, for unsupervised generation of animated video. In our approach, the input audio clip is not restricted to any specific language, which gives the method multilingual applicability. OneShotAu2AV can generate animated videos that have: (a) lip movements that are in sync with the audio, (b) natural facial expressions such as blinks and eyebrow movements, (c) head movements. Experimental evaluation demonstrates superior performance of OneShotAu2AV as compared to U-GAT-IT and RecycleGan on multiple quantitative metrics including KID(Kernel Inception Distance), Word error rate, blinks/sec
Abstract:Audio to Video generation is an interesting problem that has numerous applications across industry verticals including film making, multi-media, marketing, education and others. High-quality video generation with expressive facial movements is a challenging problem that involves complex learning steps for generative adversarial networks. Further, enabling one-shot learning for an unseen single image increases the complexity of the problem while simultaneously making it more applicable to practical scenarios. In the paper, we propose a novel approach OneShotA2V to synthesize a talking person video of arbitrary length using as input: an audio signal and a single unseen image of a person. OneShotA2V leverages curriculum learning to learn movements of expressive facial components and hence generates a high-quality talking-head video of the given person. Further, it feeds the features generated from the audio input directly into a generative adversarial network and it adapts to any given unseen selfie by applying fewshot learning with only a few output updation epochs. OneShotA2V leverages spatially adaptive normalization based multi-level generator and multiple multi-level discriminators based architecture. The input audio clip is not restricted to any specific language, which gives the method multilingual applicability. Experimental evaluation demonstrates superior performance of OneShotA2V as compared to Realistic Speech-Driven Facial Animation with GANs(RSDGAN) [43], Speech2Vid [8], and other approaches, on multiple quantitative metrics including: SSIM (structural similarity index), PSNR (peak signal to noise ratio) and CPBD (image sharpness). Further, qualitative evaluation and Online Turing tests demonstrate the efficacy of our approach.
Abstract:Speech-driven facial video generation has been a complex problem due to its multi-modal aspects namely audio and video domain. The audio comprises lots of underlying features such as expression, pitch, loudness, prosody(speaking style) and facial video has lots of variability in terms of head movement, eye blinks, lip synchronization and movements of various facial action units along with temporal smoothness. Synthesizing highly expressive facial videos from the audio input and static image is still a challenging task for generative adversarial networks. In this paper, we propose a multi-modal adaptive normalization(MAN) based architecture to synthesize a talking person video of arbitrary length using as input: an audio signal and a single image of a person. The architecture uses the multi-modal adaptive normalization, keypoint heatmap predictor, optical flow predictor and class activation map[58] based layers to learn movements of expressive facial components and hence generates a highly expressive talking-head video of the given person. The multi-modal adaptive normalization uses the various features of audio and video such as Mel spectrogram, pitch, energy from audio signals and predicted keypoint heatmap/optical flow and a single image to learn the respective affine parameters to generate highly expressive video. Experimental evaluation demonstrates superior performance of the proposed method as compared to Realistic Speech-Driven Facial Animation with GANs(RSDGAN) [53], Speech2Vid [10], and other approaches, on multiple quantitative metrics including: SSIM (structural similarity index), PSNR (peak signal to noise ratio), CPBD (image sharpness), WER(word error rate), blinks/sec and LMD(landmark distance). Further, qualitative evaluation and Online Turing tests demonstrate the efficacy of our approach.
Abstract:The style of the speech varies from person to person and every person exhibits his or her own style of speaking that is determined by the language, geography, culture and other factors. Style is best captured by prosody of a signal. High quality multi-speaker speech synthesis while considering prosody and in a few shot manner is an area of active research with many real-world applications. While multiple efforts have been made in this direction, it remains an interesting and challenging problem. In this paper, we present a novel few shot multi-speaker speech synthesis approach (FSM-SS) that leverages adaptive normalization architecture with a non-autoregressive multi-head attention model. Given an input text and a reference speech sample of an unseen person, FSM-SS can generate speech in that person's style in a few shot manner. Additionally, we demonstrate how the affine parameters of normalization help in capturing the prosodic features such as energy and fundamental frequency in a disentangled fashion and can be used to generate morphed speech output. We demonstrate the efficacy of our proposed architecture on multi-speaker VCTK and LibriTTS datasets, using multiple quantitative metrics that measure generated speech distortion and MoS, along with speaker embedding analysis of the generated speech vs the actual speech samples.