Abstract:Analyzing network topologies and communication graphs plays a crucial role in contemporary network management. However, the absence of a cohesive approach leads to a challenging learning curve, heightened errors, and inefficiencies. In this paper, we introduce a novel approach to facilitate a natural-language-based network management experience, utilizing large language models (LLMs) to generate task-specific code from natural language queries. This method tackles the challenges of explainability, scalability, and privacy by allowing network operators to inspect the generated code, eliminating the need to share network data with LLMs, and concentrating on application-specific requests combined with general program synthesis techniques. We design and evaluate a prototype system using benchmark applications, showcasing high accuracy, cost-effectiveness, and the potential for further enhancements using complementary program synthesis techniques.
Abstract:Routing is, arguably, the most fundamental task in computer networking, and the most extensively studied one. A key challenge for routing in real-world environments is the need to contend with uncertainty about future traffic demands. We present a new approach to routing under demand uncertainty: tackling this challenge as stochastic optimization, and employing deep learning to learn complex patterns in traffic demands. We show that our method provably converges to the global optimum in well-studied theoretical models of multicommodity flow. We exemplify the practical usefulness of our approach by zooming in on the real-world challenge of traffic engineering (TE) on wide-area networks (WANs). Our extensive empirical evaluation on real-world traffic and network topologies establishes that our approach's TE quality almost matches that of an (infeasible) omniscient oracle, outperforming previously proposed approaches, and also substantially lowers runtimes.