Abstract:Hair styling is a crucial aspect of personal grooming, significantly influenced by the appearance of front hair. While brushing is commonly used both to detangle hair and for styling purposes, existing research primarily focuses on robotic systems for detangling hair, with limited exploration into robotic hair styling. This research presents a novel robotic system designed to automatically adjust front hairstyles, with an emphasis on path planning for root-centric strand adjustment. The system utilizes images to compare the current hair state with the desired target state through an orientation map of hair strands. By concentrating on the differences in hair orientation and specifically targeting adjustments at the root of each strand, the system performs detailed styling tasks. The path planning approach ensures effective alignment of the hairstyle with the target, and a closed-loop mechanism refines these adjustments to accurately evolve the hairstyle towards the desired outcome. Experimental results demonstrate that the proposed system achieves a high degree of similarity and consistency in front hair styling, showing promising results for automated, precise hairstyle adjustments.
Abstract:This paper describes a strategy for implementing a robotic system capable of performing General Purpose Service Robot (GPSR) tasks in robocup@home. The GPSR task is that a real robot hears a variety of commands in spoken language and executes a task in a daily life environment. To achieve the task, we integrate foundation models based inference system and a state machine task executable. The foundation models plan the task and detect objects with open vocabulary, and a state machine task executable manages each robot's actions. This system works stable, and we took first place in the RoboCup@home Japan Open 2022's GPSR with 130 points, more than 85 points ahead of the other teams.