Abstract:Future advanced driver assistance systems and autonomous vehicles rely on accurate localization, which can be divided into three classes: a) viewpoint localization about local references (e.g., via vision-based localization), b) absolute localization about a global reference system (e.g., via satellite navigation), and c) hybrid localization, which presents a combination of the former two. Hybrid localization shares characteristics and strengths of both absolute and viewpoint localization. However, new sources of error, such as inaccurate sensor-setup calibration, complement the potential errors of the respective sub-systems. Therefore, this paper introduces a general approach to analyzing error sources in hybrid localization systems. More specifically, we propose the Kappa-Phi method, which allows for the decomposition of localization errors into individual components, i.e., into a sum of parameterized functions of the measured state (e.g., agent kinematics). The error components can then be leveraged to, e.g., improve localization predictions, correct map data, or calibrate sensor setups. Theoretical derivations and evaluations show that the algorithm presents a promising approach to improve hybrid localization and counter the weaknesses of the system's individual components.
Abstract:Employing Unmanned Aircraft Systems (UAS) beyond visual line of sight (BVLOS) is an endearing and challenging task. While UAS have the potential to significantly enhance today's logistics and emergency response capabilities, unmanned flying objects above the heads of unprotected pedestrians induce similarly significant safety risks. In this work, we make strides towards improved safety and legal compliance in applying UAS in two ways. First, we demonstrate navigation within the Probabilistic Mission Design (ProMis) framework. To this end, our approach translates Probabilistic Mission Landscapes (PML) into a navigation graph and derives a cost from the probability of complying with all underlying constraints. Second, we introduce the clearance, explanation, and optimization (CEO) cycle on top of ProMis by leveraging the declaratively encoded domain knowledge, legal requirements, and safety assertions to guide the mission design process. Based on inaccurate, crowd-sourced map data and a synthetic scenario, we illustrate the application and utility of our methods in UAS navigation.
Abstract:Advanced Air Mobility (AAM) is a growing field that demands a deep understanding of legal, spatial and temporal concepts in navigation. Hence, any implementation of AAM is forced to deal with the inherent uncertainties of human-inhabited spaces. Enabling growth and innovation requires the creation of a system for safe and robust mission design, i.e., the way we formalize intentions and decide their execution as trajectories for the Unmanned Aerial Vehicle (UAV). Although legal frameworks have emerged to govern urban air spaces, their full integration into the decision process of autonomous agents and operators remains an open task. In this work we present ProMis, a system architecture for probabilistic mission design. It links the data available from various static and dynamic data sources with legal text and operator requirements by following principles of formal verification and probabilistic modeling. Hereby, ProMis enables the combination of low-level perception and high-level rules in AAM to infer validity over the UAV's state-space. To this end, we employ Hybrid Probabilistic Logic Programs (HPLP) as a unifying, intermediate representation between perception and action-taking. Furthermore, we present methods to connect ProMis with crowd-sourced map data by generating HPLP atoms that represent spatial relations in a probabilistic fashion. Our claims of the utility and generality of ProMis are supported by experiments on a diverse set of scenarios and a discussion of the computational demands associated with probabilistic missions.