Abstract:The 3D occupancy estimation task has become an important challenge in the area of vision-based autonomous driving recently. However, most existing camera-based methods rely on costly 3D voxel labels or LiDAR scans for training, limiting their practicality and scalability. Moreover, most methods are tied to a predefined set of classes which they can detect. In this work we present a novel approach for open vocabulary occupancy estimation called LangOcc, that is trained only via camera images, and can detect arbitrary semantics via vision-language alignment. In particular, we distill the knowledge of the strong vision-language aligned encoder CLIP into a 3D occupancy model via differentiable volume rendering. Our model estimates vision-language aligned features in a 3D voxel grid using only images. It is trained in a self-supervised manner by rendering our estimations back to 2D space, where ground-truth features can be computed. This training mechanism automatically supervises the scene geometry, allowing for a straight-forward and powerful training method without any explicit geometry supervision. LangOcc outperforms LiDAR-supervised competitors in open vocabulary occupancy by a large margin, solely relying on vision-based training. We also achieve state-of-the-art results in self-supervised semantic occupancy estimation on the Occ3D-nuScenes dataset, despite not being limited to a specific set of categories, thus demonstrating the effectiveness of our proposed vision-language training.
Abstract:Semantic occupancy has recently gained significant traction as a prominent 3D scene representation. However, most existing methods rely on large and costly datasets with fine-grained 3D voxel labels for training, which limits their practicality and scalability, increasing the need for self-monitored learning in this domain. In this work, we present a novel approach to occupancy estimation inspired by neural radiance field (NeRF) using only 2D labels, which are considerably easier to acquire. In particular, we employ differentiable volumetric rendering to predict depth and semantic maps and train a 3D network based on 2D supervision only. To enhance geometric accuracy and increase the supervisory signal, we introduce temporal rendering of adjacent time steps. Additionally, we introduce occupancy flow as a mechanism to handle dynamic objects in the scene and ensure their temporal consistency. Through extensive experimentation we demonstrate that 2D supervision only is sufficient to achieve state-of-the-art performance compared to methods using 3D labels, while outperforming concurrent 2D approaches. When combining 2D supervision with 3D labels, temporal rendering and occupancy flow we outperform all previous occupancy estimation models significantly. We conclude that the proposed rendering supervision and occupancy flow advances occupancy estimation and further bridges the gap towards self-supervised learning in this domain.
Abstract:In this paper we present a new approach to tackle complex routing problems with an improved state representation that utilizes the model complexity better than previous methods. We enable this by training from temporal differences. Specifically Q-Learning is employed. We show that our approach achieves state-of-the-art performance for autoregressive policies that sequentially insert nodes to construct solutions on the CVRP. Additionally, we are the first to tackle the MDVRP with machine learning methods and demonstrate that this problem type greatly benefits from our approach over other ML methods.