Abstract:The growing demand for efficient semantic communication systems capable of managing diverse tasks and adapting to fluctuating channel conditions has driven the development of robust, resource-efficient frameworks. This article introduces a novel channel-adaptive and multi-task-aware semantic communication framework based on a masked auto-encoder architecture. Our framework optimizes the transmission of meaningful information by incorporating a multi-task-aware scoring mechanism that identifies and prioritizes semantically significant data across multiple concurrent tasks. A channel-aware extractor is employed to dynamically select relevant information in response to real-time channel conditions. By jointly optimizing semantic relevance and transmission efficiency, the framework ensures minimal performance degradation under resource constraints. Experimental results demonstrate the superior performance of our framework compared to conventional methods in tasks such as image reconstruction and object detection. These results underscore the framework's adaptability to heterogeneous channel environments and its scalability for multi-task applications, positioning it as a promising solution for next-generation semantic communication networks.
Abstract:Mobile edge computing (MEC) is a promising paradigm to meet the quality of service (QoS) requirements of latency-sensitive IoT applications. However, attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns, thereby incurring the pattern privacy (PP) issue. Therefore, we propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving PP. Firstly, we formulate the dynamic computation offloading procedure as a Markov decision process (MDP). Next, we develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions. This is achieved by modifying the deep Q-network (DQN) with a Function-output Gaussian process mechanism. We provide a theoretical privacy guarantee and a utility guarantee (learning error bound) for the DP-DQO algorithm and finally, conduct simulations to evaluate the performance of our proposed algorithm by comparing it with greedy and DQN-based algorithms.