Abstract:The exponential growth of Large Language Models (LLMs) continues to highlight the need for efficient strategies to meet ever-expanding computational and data demands. This survey provides a comprehensive analysis of two complementary paradigms: Knowledge Distillation (KD) and Dataset Distillation (DD), both aimed at compressing LLMs while preserving their advanced reasoning capabilities and linguistic diversity. We first examine key methodologies in KD, such as task-specific alignment, rationale-based training, and multi-teacher frameworks, alongside DD techniques that synthesize compact, high-impact datasets through optimization-based gradient matching, latent space regularization, and generative synthesis. Building on these foundations, we explore how integrating KD and DD can produce more effective and scalable compression strategies. Together, these approaches address persistent challenges in model scalability, architectural heterogeneity, and the preservation of emergent LLM abilities. We further highlight applications across domains such as healthcare and education, where distillation enables efficient deployment without sacrificing performance. Despite substantial progress, open challenges remain in preserving emergent reasoning and linguistic diversity, enabling efficient adaptation to continually evolving teacher models and datasets, and establishing comprehensive evaluation protocols. By synthesizing methodological innovations, theoretical foundations, and practical insights, our survey charts a path toward sustainable, resource-efficient LLMs through the tighter integration of KD and DD principles.
Abstract:Deep learning models developed for time-series associated tasks have become more widely researched nowadays. However, due to the unintuitive nature of time-series data, the interpretability problem -- where we understand what is under the hood of these models -- becomes crucial. The advancement of similar studies in computer vision has given rise to many post-hoc methods, which can also shed light on how to explain time-series models. In this paper, we present a wide range of post-hoc interpretation methods for time-series models based on backpropagation, perturbation, and approximation. We also want to bring focus onto inherently interpretable models, a novel category of interpretation where human-understandable information is designed within the models. Furthermore, we introduce some common evaluation metrics used for the explanations, and propose several directions of future researches on the time-series interpretability problem. As a highlight, our work summarizes not only the well-established interpretation methods, but also a handful of fairly recent and under-developed techniques, which we hope to capture their essence and spark future endeavours to innovate and improvise.