Abstract:In this paper, we present a deep generative model based method to generate diverse human motion interpolation results. We resort to the Conditional Variational Auto-Encoder (CVAE) to learn human motion conditioned on a pair of given start and end motions, by leveraging the Recurrent Neural Network (RNN) structure for both the encoder and the decoder. Additionally, we introduce a regularization loss to further promote sample diversity. Once trained, our method is able to generate multiple plausible coherent motions by repetitively sampling from the learned latent space. Experiments on the publicly available dataset demonstrate the effectiveness of our method, in terms of sample plausibility and diversity.
Abstract:Many Natural Language Processing works on emotion analysis only focus on simple emotion classification without exploring the potentials of putting emotion into "event context", and ignore the analysis of emotion-related events. One main reason is the lack of this kind of corpus. Here we present Cause-Emotion-Action Corpus, which manually annotates not only emotion, but also cause events and action events. We propose two new tasks based on the data-set: emotion causality and emotion inference. The first task is to extract a triple (cause, emotion, action). The second task is to infer the probable emotion. We are currently releasing the data-set with 10,603 samples and 15,892 events, basic statistic analysis and baseline on both emotion causality and emotion inference tasks. Baseline performance demonstrates that there is much room for both tasks to be improved.