Abstract:With the continuous development of technological and educational innovation, learners nowadays can obtain a variety of support from agents such as teachers, peers, education technologies, and recently, generative artificial intelligence such as ChatGPT. The concept of hybrid intelligence is still at a nascent stage, and how learners can benefit from a symbiotic relationship with various agents such as AI, human experts and intelligent learning systems is still unknown. The emerging concept of hybrid intelligence also lacks deep insights and understanding of the mechanisms and consequences of hybrid human-AI learning based on strong empirical research. In order to address this gap, we conducted a randomised experimental study and compared learners' motivations, self-regulated learning processes and learning performances on a writing task among different groups who had support from different agents (ChatGPT, human expert, writing analytics tools, and no extra tool). A total of 117 university students were recruited, and their multi-channel learning, performance and motivation data were collected and analysed. The results revealed that: learners who received different learning support showed no difference in post-task intrinsic motivation; there were significant differences in the frequency and sequences of the self-regulated learning processes among groups; ChatGPT group outperformed in the essay score improvement but their knowledge gain and transfer were not significantly different. Our research found that in the absence of differences in motivation, learners with different supports still exhibited different self-regulated learning processes, ultimately leading to differentiated performance. What is particularly noteworthy is that AI technologies such as ChatGPT may promote learners' dependence on technology and potentially trigger metacognitive laziness.