Abstract:In the realm of large-scale point cloud registration, designing a compact symbolic representation is crucial for efficiently processing vast amounts of data, ensuring registration robustness against significant viewpoint variations and occlusions. This paper introduces a novel point cloud registration method, i.e., QuadricsReg, which leverages concise quadrics primitives to represent scenes and utilizes their geometric characteristics to establish correspondences for 6-DoF transformation estimation. As a symbolic feature, the quadric representation fully captures the primary geometric characteristics of scenes, which can efficiently handle the complexity of large-scale point clouds. The intrinsic characteristics of quadrics, such as types and scales, are employed to initialize correspondences. Then we build a multi-level compatibility graph set to find the correspondences using the maximum clique on the geometric consistency between quadrics. Finally, we estimate the 6-DoF transformation using the quadric correspondences, which is further optimized based on the quadric degeneracy-aware distance in a factor graph, ensuring high registration accuracy and robustness against degenerate structures. We test on 5 public datasets and the self-collected heterogeneous dataset across different LiDAR sensors and robot platforms. The exceptional registration success rates and minimal registration errors demonstrate the effectiveness of QuadricsReg in large-scale point cloud registration scenarios. Furthermore, the real-world registration testing on our self-collected heterogeneous dataset shows the robustness and generalization ability of QuadricsReg on different LiDAR sensors and robot platforms. The codes and demos will be released at \url{https://levenberg.github.io/QuadricsReg}.
Abstract:Deep learning based intrusion detection systems (DL-based IDS) have emerged as one of the best choices for providing security solutions against various network intrusion attacks. However, due to the emergence and development of adversarial deep learning technologies, it becomes challenging for the adoption of DL models into IDS. In this paper, we propose a novel IDS architecture that can enhance the robustness of IDS against adversarial attacks by combining conventional machine learning (ML) models and Deep Learning models. The proposed DLL-IDS consists of three components: DL-based IDS, adversarial example (AE) detector, and ML-based IDS. We first develop a novel AE detector based on the local intrinsic dimensionality (LID). Then, we exploit the low attack transferability between DL models and ML models to find a robust ML model that can assist us in determining the maliciousness of AEs. If the input traffic is detected as an AE, the ML-based IDS will predict the maliciousness of input traffic, otherwise the DL-based IDS will work for the prediction. The fusion mechanism can leverage the high prediction accuracy of DL models and low attack transferability between DL models and ML models to improve the robustness of the whole system. In our experiments, we observe a significant improvement in the prediction performance of the IDS when subjected to adversarial attack, achieving high accuracy with low resource consumption.