Abstract:Answering questions using pre-trained language models (LMs) and knowledge graphs (KGs) presents challenges in identifying relevant knowledge and performing joint reasoning.We compared LMs (fine-tuned for the task) with the previously published QAGNN method for the Question-answering (QA) objective and further measured the impact of additional factual context on the QAGNN performance. The QAGNN method employs LMs to encode QA context and estimate KG node importance, and effectively update the question choice entity representations using Graph Neural Networks (GNNs). We further experimented with enhancing the QA context encoding by incorporating relevant knowledge facts for the question stem. The models are trained on the OpenbookQA dataset, which contains ~6000 4-way multiple choice questions and is widely used as a benchmark for QA tasks. Through our experimentation, we found that incorporating knowledge facts context led to a significant improvement in performance. In contrast, the addition of knowledge graphs to language models resulted in only a modest increase. This suggests that the integration of contextual knowledge facts may be more impactful for enhancing question answering performance compared to solely adding knowledge graphs.
Abstract:Reducing and detecting hallucinations in large language models is an open research problem. In this project, we attempt to leverage recent advances in the field of uncertainty estimation to reduce hallucinations in frozen large language models. Epistemic neural networks have recently been proposed to improve output joint distributions for large pre-trained models. ENNs are small networks attached to large, frozen models to improve the model's joint distributions and uncertainty estimates. In this work, we train an epistemic neural network on top of the Llama-2 7B model combined with a contrastive decoding feature enhancement technique. We are the first to train an ENN for the next token prediction task and explore the efficacy of this method in reducing hallucinations on the TruthfulQA dataset. In essence, we provide a method that leverages a pre-trained model's latent embeddings to reduce hallucinations.
Abstract:The rapid advancement of large language models (LLMs) has sparked interest in data synthesis techniques, aiming to generate diverse and high-quality synthetic datasets. However, these synthetic datasets often suffer from a lack of diversity and added noise. In this paper, we present TarGEN, a multi-step prompting strategy for generating high-quality synthetic datasets utilizing a LLM. An advantage of TarGEN is its seedless nature; it does not require specific task instances, broadening its applicability beyond task replication. We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances during dataset creation, ensuring reliable labels. To assess our technique's effectiveness, we emulate 8 tasks from the SuperGLUE benchmark and finetune various language models, including encoder-only, encoder-decoder, and decoder-only models on both synthetic and original training sets. Evaluation on the original test set reveals that models trained on datasets generated by TarGEN perform approximately 1-2% points better than those trained on original datasets (82.84% via syn. vs. 81.12% on og. using Flan-T5). When incorporating instruction tuning, the performance increases to 84.54% on synthetic data vs. 81.49% on original data by Flan-T5. A comprehensive analysis of the synthetic dataset compared to the original dataset reveals that the synthetic dataset demonstrates similar or higher levels of dataset complexity and diversity. Furthermore, the synthetic dataset displays a bias level that aligns closely with the original dataset. Finally, when pre-finetuned on our synthetic SuperGLUE dataset, T5-3B yields impressive results on the OpenLLM leaderboard, surpassing the model trained on the Self-Instruct dataset by 4.14% points. We hope that TarGEN can be helpful for quality data generation and reducing the human efforts to create complex benchmarks.