Abstract:Controlling hand exoskeletons to assist individuals with grasping tasks poses a challenge due to the difficulty in understanding user intentions. We propose that most daily grasping tasks during activities of daily living (ADL) can be deduced by analyzing object geometries (simple and complex) from 3D point clouds. The study introduces PointGrasp, a real-time system designed for identifying household scenes semantically, aiming to support and enhance assistance during ADL for tailored end-to-end grasping tasks. The system comprises an RGB-D camera with an inertial measurement unit and a microprocessor integrated into a tendon-driven soft robotic glove. The RGB-D camera processes 3D scenes at a rate exceeding 30 frames per second. The proposed pipeline demonstrates an average RMSE of 0.8 $\pm$ 0.39 cm for simple and 0.11 $\pm$ 0.06 cm for complex geometries. Within each mode, it identifies and pinpoints reachable objects. This system shows promise in end-to-end vision-driven robotic-assisted rehabilitation manual tasks.
Abstract:Legged robots, particularly quadrupeds, offer promising navigation capabilities, especially in scenarios requiring traversal over diverse terrains and obstacle avoidance. This paper addresses the challenge of enabling legged robots to navigate complex environments effectively through the integration of data-driven path-planning methods. We propose an approach that utilizes differentiable planners, allowing the learning of end-to-end global plans via a neural network for commanding quadruped robots. The approach leverages 2D maps and obstacle specifications as inputs to generate a global path. To enhance the functionality of the developed neural network-based path planner, we use Vision Transformers (ViT) for map pre-processing, to enable the effective handling of larger maps. Experimental evaluations on two real robotic quadrupeds (Boston Dynamics Spot and Unitree Go1) demonstrate the effectiveness and versatility of the proposed approach in generating reliable path plans.