Abstract:Crafting effective captions for figures is important. Readers heavily depend on these captions to grasp the figure's message. However, despite a well-developed set of AI technologies for figures and captions, these have rarely been tested for usefulness in aiding caption writing. This paper introduces SciCapenter, an interactive system that puts together cutting-edge AI technologies for scientific figure captions to aid caption composition. SciCapenter generates a variety of captions for each figure in a scholarly article, providing scores and a comprehensive checklist to assess caption quality across multiple critical aspects, such as helpfulness, OCR mention, key takeaways, and visual properties reference. Users can directly edit captions in SciCapenter, resubmit for revised evaluations, and iteratively refine them. A user study with Ph.D. students indicates that SciCapenter significantly lowers the cognitive load of caption writing. Participants' feedback further offers valuable design insights for future systems aiming to enhance caption writing.
Abstract:The proliferation of automated conversational systems such as chatbots, spoken-dialogue systems, and smart speakers, has significantly impacted modern digital life. However, these systems are primarily designed to provide answers to well-defined questions rather than to support users in exploring complex, ill-defined questions. In this paper, we aim to push the boundaries of conversational systems by examining the types of nebulous, open-ended questions that can best be answered through conversation. We first sampled 500 questions from one million open-ended requests posted on AskReddit, and then recruited online crowd workers to answer eight inquiries about these questions. We also performed open coding to categorize the questions into 27 different domains. We found that the issues people believe require conversation to resolve satisfactorily are highly social and personal. Our work provides insights into how future research could be geared to align with users' needs.