Abstract:An emerging area of research aims to learn deep generative models with limited training data. Prior generative models like GANs and diffusion models require a lot of data to perform well, and their performance degrades when they are trained on only a small amount of data. A recent technique called Implicit Maximum Likelihood Estimation (IMLE) has been adapted to the few-shot setting, achieving state-of-the-art performance. However, current IMLE-based approaches encounter challenges due to inadequate correspondence between the latent codes selected for training and those drawn during inference. This results in suboptimal test-time performance. We theoretically show a way to address this issue and propose RS-IMLE, a novel approach that changes the prior distribution used for training. This leads to substantially higher quality image generation compared to existing GAN and IMLE-based methods, as validated by comprehensive experiments conducted on nine few-shot image datasets.
Abstract:Recent advancements in neural rendering have excelled at novel view synthesis from multi-view RGB images. However, they often lack the capability to edit the shading or colour of the scene at a detailed point-level, while ensuring consistency across different viewpoints. In this work, we address the challenge of point-level 3D scene albedo and shading editing from multi-view RGB images, focusing on detailed editing at the point-level rather than at a part or global level. While prior works based on volumetric representation such as NeRF struggle with achieving 3D consistent editing at the point level, recent advancements in point-based neural rendering show promise in overcoming this challenge. We introduce ``Intrinsic PAPR'', a novel method based on the recent point-based neural rendering technique Proximity Attention Point Rendering (PAPR). Unlike other point-based methods that model the intrinsic decomposition of the scene, our approach does not rely on complicated shading models or simplistic priors that may not universally apply. Instead, we directly model scene decomposition into albedo and shading components, leading to better estimation accuracy. Comparative evaluations against the latest point-based inverse rendering methods demonstrate that Intrinsic PAPR achieves higher-quality novel view rendering and superior point-level albedo and shading editing.
Abstract:We propose the problem of point-level 3D scene interpolation, which aims to simultaneously reconstruct a 3D scene in two states from multiple views, synthesize smooth point-level interpolations between them, and render the scene from novel viewpoints, all without any supervision between the states. The primary challenge is on achieving a smooth transition between states that may involve significant and non-rigid changes. To address these challenges, we introduce "PAPR in Motion", a novel approach that builds upon the recent Proximity Attention Point Rendering (PAPR) technique, which can deform a point cloud to match a significantly different shape and render a visually coherent scene even after non-rigid deformations. Our approach is specifically designed to maintain the temporal consistency of the geometric structure by introducing various regularization techniques for PAPR. The result is a method that can effectively bridge large scene changes and produce visually coherent and temporally smooth interpolations in both geometry and appearance. Evaluation across diverse motion types demonstrates that "PAPR in Motion" outperforms the leading neural renderer for dynamic scenes. For more results and code, please visit our project website at https://niopeng.github.io/PAPR-in-Motion/ .
Abstract:Deep generative models, such as diffusion models, GANs, and IMLE, have shown impressive capability in tackling inverse problems. However, the validity of model-generated solutions w.r.t. the forward problem and the reliability of associated uncertainty estimates remain understudied. This study evaluates recent diffusion-based, GAN-based, and IMLE-based methods on three inverse problems, i.e., $16\times$ super-resolution, colourization, and image decompression. We assess the validity of these models' outputs as solutions to the inverse problems and conduct a thorough analysis of the reliability of the models' estimates of uncertainty over the solution. Overall, we find that the IMLE-based CHIMLE method outperforms other methods in terms of producing valid solutions and reliable uncertainty estimates.
Abstract:Learning accurate and parsimonious point cloud representations of scene surfaces from scratch remains a challenge in 3D representation learning. Existing point-based methods often suffer from the vanishing gradient problem or require a large number of points to accurately model scene geometry and texture. To address these limitations, we propose Proximity Attention Point Rendering (PAPR), a novel method that consists of a point-based scene representation and a differentiable renderer. Our scene representation uses a point cloud where each point is characterized by its spatial position, foreground score, and view-independent feature vector. The renderer selects the relevant points for each ray and produces accurate colours using their associated features. PAPR effectively learns point cloud positions to represent the correct scene geometry, even when the initialization drastically differs from the target geometry. Notably, our method captures fine texture details while using only a parsimonious set of points. We also demonstrate four practical applications of our method: geometry editing, object manipulation, texture transfer, and exposure control. More results and code are available on our project website at https://zvict.github.io/papr/.
Abstract:A persistent challenge in conditional image synthesis has been to generate diverse output images from the same input image despite only one output image being observed per input image. GAN-based methods are prone to mode collapse, which leads to low diversity. To get around this, we leverage Implicit Maximum Likelihood Estimation (IMLE) which can overcome mode collapse fundamentally. IMLE uses the same generator as GANs but trains it with a different, non-adversarial objective which ensures each observed image has a generated sample nearby. Unfortunately, to generate high-fidelity images, prior IMLE-based methods require a large number of samples, which is expensive. In this paper, we propose a new method to get around this limitation, which we dub Conditional Hierarchical IMLE (CHIMLE), which can generate high-fidelity images without requiring many samples. We show CHIMLE significantly outperforms the prior best IMLE, GAN and diffusion-based methods in terms of image fidelity and mode coverage across four tasks, namely night-to-day, 16x single image super-resolution, image colourization and image decompression. Quantitatively, our method improves Fr\'echet Inception Distance (FID) by 36.9% on average compared to the prior best IMLE-based method, and by 27.5% on average compared to the best non-IMLE-based general-purpose methods.
Abstract:Shape completion is the problem of completing partial input shapes such as partial scans. This problem finds important applications in computer vision and robotics due to issues such as occlusion or sparsity in real-world data. However, most of the existing research related to shape completion has been focused on completing shapes by learning a one-to-one mapping which limits the diversity and creativity of the produced results. We propose a novel multimodal shape completion technique that is effectively able to learn a one-to-many mapping and generates diverse complete shapes. Our approach is based on the conditional Implicit MaximumLikelihood Estimation (IMLE) technique wherein we condition our inputs on partial 3D point clouds. We extensively evaluate our approach by comparing it to various baselines both quantitatively and qualitatively. We show that our method is superior to alternatives in terms of completeness and diversity of shapes.
Abstract:Deep generative models such as GANs have driven impressive advances in conditional image synthesis in recent years. A persistent challenge has been to generate diverse versions of output images from the same input image, due to the problem of mode collapse: because only one ground truth output image is given per input image, only one mode of the conditional distribution is modelled. In this paper, we focus on this problem of multimodal conditional image synthesis and build on the recently proposed technique of Implicit Maximum Likelihood Estimation (IMLE). Prior IMLE-based methods required different architectures for different tasks, which limit their applicability, and were lacking in fine details in the generated images. We propose CAM-Net, a unified architecture that can be applied to a broad range of tasks. Additionally, it is capable of generating convincing high frequency details, achieving a reduction of the Frechet Inception Distance (FID) by up to 45.3% compared to the baseline.
Abstract:In continual learning, new categories may be introduced over time, and an ideal learning system should perform well on both the original categories and the new categories. While deep neural nets have achieved resounding success in the classical supervised setting, they are known to forget about knowledge acquired in prior episodes of learning if the examples encountered in the current episode of learning are drastically different from those encountered in prior episodes. In this paper, we propose a new method that can both leverage the expressive power of deep neural nets and is resilient to forgetting when new categories are introduced. We found the proposed method can reduce forgetting by 2.3x to 6.9x on CIFAR-10 compared to existing methods and by 1.8x to 2.7x on ImageNet compared to an oracle baseline.
Abstract:We consider problems where multiple predictions can be considered correct, but only one of them is given as supervision. This setting differs from both the regression and class-conditional generative modelling settings: in the former, there is a unique observed output for each input, which is provided as supervision; in the latter, there are many observed outputs for each input, and many are provided as supervision. Applying either regression methods and conditional generative models to the present setting often results in a model that can only make a single prediction for each input. We explore several problems that have this property and develop an approach that can generate multiple high-quality predictions given the same input. As a result, it can be used to generate high-quality outputs that are different from the observed output.