Abstract:While diffusion models show extraordinary talents in text-to-image generation, they may still fail to generate highly aesthetic images. More specifically, there is still a gap between the generated images and the real-world aesthetic images in finer-grained dimensions including color, lighting, composition, etc. In this paper, we propose Cross-Attention Value Mixing Control (VMix) Adapter, a plug-and-play aesthetics adapter, to upgrade the quality of generated images while maintaining generality across visual concepts by (1) disentangling the input text prompt into the content description and aesthetic description by the initialization of aesthetic embedding, and (2) integrating aesthetic conditions into the denoising process through value-mixed cross-attention, with the network connected by zero-initialized linear layers. Our key insight is to enhance the aesthetic presentation of existing diffusion models by designing a superior condition control method, all while preserving the image-text alignment. Through our meticulous design, VMix is flexible enough to be applied to community models for better visual performance without retraining. To validate the effectiveness of our method, we conducted extensive experiments, showing that VMix outperforms other state-of-the-art methods and is compatible with other community modules (e.g., LoRA, ControlNet, and IPAdapter) for image generation. The project page is https://vmix-diffusion.github.io/VMix/.
Abstract:Safety clothing and helmets play a crucial role in ensuring worker safety at construction sites. Recently, deep learning methods have garnered significant attention in the field of computer vision for their potential to enhance safety and efficiency in various industries. However, limited availability of high-quality datasets has hindered the development of deep learning methods for safety clothing and helmet detection. In this work, we present a large, comprehensive, and realistic high-quality dataset for safety clothing and helmet detection, which was collected from a real-world chemical plant and annotated by professional security inspectors. Our dataset has been compared with several existing open-source datasets, and its effectiveness has been verified applying some classic object detection methods. The results demonstrate that our dataset is more complete and performs better in real-world settings. Furthermore, we have released our deployment code to the public to encourage the adoption of our dataset and improve worker safety. We hope that our efforts will promote the convergence of academic research and industry, ultimately contribute to the betterment of society.