Abstract:As large language models (LLMs) scale, model compression is crucial for edge deployment and accessibility. Weight-only quantization reduces model size but suffers from performance degradation at lower bit widths. Moreover, standard finetuning is incompatible with quantized models, and alternative methods often fall short of full finetuning. In this paper, we propose ClusComp, a simple yet effective compression paradigm that clusters weight matrices into codebooks and finetunes them block-by-block. ClusComp (1) achieves superior performance in 2-4 bit quantization, (2) pushes compression to 1-bit while outperforming ultra-low-bit methods with minimal finetuning, and (3) enables efficient finetuning, even surpassing existing quantization-based approaches and rivaling full FP16 finetuning. Notably, ClusComp supports compression and finetuning of 70B LLMs on a single A6000-48GB GPU.
Abstract:Attributing answers to source documents is an approach used to enhance the verifiability of a model's output in retrieval augmented generation (RAG). Prior work has mainly focused on improving and evaluating the attribution quality of large language models (LLMs) in RAG, but this may come at the expense of inducing biases in the attribution of answers. We define and examine two aspects in the evaluation of LLMs in RAG pipelines, namely attribution sensitivity and bias with respect to authorship information. We explicitly inform an LLM about the authors of source documents, instruct it to attribute its answers, and analyze (i) how sensitive the LLM's output is to the author of source documents, and (ii) whether the LLM exhibits a bias towards human-written or AI-generated source documents. We design an experimental setup in which we use counterfactual evaluation to study three LLMs in terms of their attribution sensitivity and bias in RAG pipelines. Our results show that adding authorship information to source documents can significantly change the attribution quality of LLMs by 3% to 18%. Moreover, we show that LLMs can have an attribution bias towards explicit human authorship, which can serve as a competing hypothesis for findings of prior work that shows that LLM-generated content may be preferred over human-written contents. Our findings indicate that metadata of source documents can influence LLMs' trust, and how they attribute their answers. Furthermore, our research highlights attribution bias and sensitivity as a novel aspect of brittleness in LLMs.