Abstract:Bayesian Neural Networks(BNNs) with high-dimensional parameters pose a challenge for posterior inference due to the multi-modality of the posterior distributions. Stochastic Gradient MCMC(SGMCMC) with cyclical learning rate scheduling is a promising solution, but it requires a large number of sampling steps to explore high-dimensional multi-modal posteriors, making it computationally expensive. In this paper, we propose a meta-learning strategy to build \gls{sgmcmc} which can efficiently explore the multi-modal target distributions. Our algorithm allows the learned SGMCMC to quickly explore the high-density region of the posterior landscape. Also, we show that this exploration property is transferrable to various tasks, even for the ones unseen during a meta-training stage. Using popular image classification benchmarks and a variety of downstream tasks, we demonstrate that our method significantly improves the sampling efficiency, achieving better performance than vanilla \gls{sgmcmc} without incurring significant computational overhead.
Abstract:Large-scale image generation models, with impressive quality made possible by the vast amount of data available on the Internet, raise social concerns that these models may generate harmful or copyrighted content. The biases and harmfulness arise throughout the entire training process and are hard to completely remove, which have become significant hurdles to the safe deployment of these models. In this paper, we propose a method called SDD to prevent problematic content generation in text-to-image diffusion models. We self-distill the diffusion model to guide the noise estimate conditioned on the target removal concept to match the unconditional one. Compared to the previous methods, our method eliminates a much greater proportion of harmful content from the generated images without degrading the overall image quality. Furthermore, our method allows the removal of multiple concepts at once, whereas previous works are limited to removing a single concept at a time.