Abstract:Multi-Objective Reinforcement Learning (MORL) aims to learn a set of policies that optimize trade-offs between multiple, often conflicting objectives. MORL is computationally more complex than single-objective RL, particularly as the number of objectives increases. Additionally, when objectives involve the preferences of agents or groups, ensuring fairness is socially desirable. This paper introduces a principled algorithm that incorporates fairness into MORL while improving scalability to many-objective problems. We propose using Lorenz dominance to identify policies with equitable reward distributions and introduce {\lambda}-Lorenz dominance to enable flexible fairness preferences. We release a new, large-scale real-world transport planning environment and demonstrate that our method encourages the discovery of fair policies, showing improved scalability in two large cities (Xi'an and Amsterdam). Our methods outperform common multi-objective approaches, particularly in high-dimensional objective spaces.
Abstract:This paper aims to advance our understanding of how Visual Language Models (VLMs) handle privacy-sensitive information, a crucial concern as these technologies become integral to everyday life. To this end, we introduce a new benchmark PrivBench, which contains images from 8 sensitive categories such as passports, or fingerprints. We evaluate 10 state-of-the-art VLMs on this benchmark and observe a generally limited understanding of privacy, highlighting a significant area for model improvement. Based on this we introduce PrivTune, a new instruction-tuning dataset aimed at equipping VLMs with knowledge about visual privacy. By tuning two pretrained VLMs, TinyLLaVa and MiniGPT-v2, on this small dataset, we achieve strong gains in their ability to recognize sensitive content, outperforming even GPT4-V. At the same time, we show that privacy-tuning only minimally affects the VLMs performance on standard benchmarks such as VQA. Overall, this paper lays out a crucial challenge for making VLMs effective in handling real-world data safely and provides a simple recipe that takes the first step towards building privacy-aware VLMs.