Abstract:Compared to "black-box" models, like random forests and deep neural networks, explainable boosting machines (EBMs) are considered "glass-box" models that can be competitively accurate while also maintaining a higher degree of transparency and explainability. However, EBMs become readily less transparent and harder to interpret in high-dimensional settings with many predictor variables; they also become more difficult to use in production due to increases in scoring time. We propose a simple solution based on the least absolute shrinkage and selection operator (LASSO) that can help introduce sparsity by reweighting the individual model terms and removing the less relevant ones, thereby allowing these models to maintain their transparency and relatively fast scoring times in higher-dimensional settings. In short, post-processing a fitted EBM with many (i.e., possibly hundreds or thousands) of terms using the LASSO can help reduce the model's complexity and drastically improve scoring time. We illustrate the basic idea using two real-world examples with code.
Abstract:Low-precision is the first order knob for achieving higher Artificial Intelligence Operations (AI-TOPS). However the algorithmic space for sub-8-bit precision compute is diverse, with disruptive changes happening frequently, making FPGAs a natural choice for Deep Neural Network inference, In this work we present an FPGA-based accelerator for CNN inference acceleration. We use {\it INT-8-2} compute (with {\it 8 bit} activation and {2 bit} weights) which is recently showing promise in the literature, and which no known ASIC, CPU or GPU natively supports today. Using a novel Adaptive Logic Module (ALM) based design, as a departure from traditional DSP based designs, we are able to achieve high performance measurement of 5 AI-TOPS for {\it Arria10} and project a performance of 76 AI-TOPS at 0.7 TOPS/W for {\it Stratix10}. This exceeds known CPU, GPU performance and comes close to best known ASIC (TPU) numbers, while retaining the versatility of the FPGA platform for other applications.