Abstract:The handwritten string recognition is still a challengeable task, though the powerful deep learning tools were introduced. In this paper, based on TAO-FCN, we proposed an end-to-end system for handwritten string recognition. Compared with the conventional methods, there is no preprocess nor manually designed rules employed. With enough labelled data, it is easy to apply the proposed method to different applications. Although the performance of the proposed method may not be comparable with the state-of-the-art approaches, it's usability and robustness are more meaningful for practical applications.
Abstract:Nowadays the CNN is widely used in practical applications for image classification task. However the design of the CNN model is very professional work and which is very difficult for ordinary users. Besides, even for experts of CNN, to select an optimal model for specific task may still need a lot of time (to train many different models). In order to solve this problem, we proposed an automated CNN recommendation system for image classification task. Our system is able to evaluate the complexity of the classification task and the classification ability of the CNN model precisely. By using the evaluation results, the system can recommend the optimal CNN model and which can match the task perfectly. The recommendation process of the system is very fast since we don't need any model training. The experiment results proved that the evaluation methods are very accurate and reliable.
Abstract:Recently, the deep neural network (derived from the artificial neural network) has attracted many researchers' attention by its outstanding performance. However, since this network requires high-performance GPUs and large storage, it is very hard to use it on individual devices. In order to improve the deep neural network, many trials have been made by refining the network structure or training strategy. Unlike those trials, in this paper, we focused on the basic propagation function of the artificial neural network and proposed the binarized deep neural network. This network is a pure binary system, in which all the values and calculations are binarized. As a result, our network can save a lot of computational resource and storage. Therefore, it is possible to use it on various devices. Moreover, the experimental results proved the feasibility of the proposed network.