Abstract:Artificial intelligence (AI) in medical device software (MDSW) represents a transformative clinical technology, attracting increasing attention within both the medical community and the regulators. In this study, we leverage a data-driven approach to automatically extract and analyze AI-enabled medical devices (AIMD) from the National Medical Products Administration (NMPA) regulatory database. The continued increase in publicly available regulatory data requires scalable methods for analysis. Automation of regulatory information screening is essential to create reproducible insights that can be quickly updated in an ever changing medical device landscape. More than 4 million entries were assessed, identifying 2,174 MDSW registrations, including 531 standalone applications and 1,643 integrated within medical devices, of which 43 were AI-enabled. It was shown that the leading medical specialties utilizing AIMD include respiratory (20.5%), ophthalmology/endocrinology (12.8%), and orthopedics (10.3%). This approach greatly improves the speed of data extracting providing a greater ability to compare and contrast. This study provides the first extensive, data-driven exploration of AIMD in China, showcasing the potential of automated regulatory data analysis in understanding and advancing the landscape of AI in medical technology.
Abstract:This work introduces a simple deep-learning based method to delineate contours by `walking' along learnt unit vector fields. We demonstrate the effectiveness of our pipeline on the unique case of open contours on the task of delineating the sacroiliac joints (SIJs) in spinal MRIs. We show that: (i) 95% of the time the average root mean square error of the predicted contour against the original ground truth is below 4.5 pixels (2.5mm for a standard T1-weighted SIJ MRI), and (ii) the proposed method is better than the baseline of regressing vertices or landmarks of contours.
Abstract:Existing interactive segmentation methods leverage automatic segmentation and user interactions for label refinement, significantly reducing the annotation workload compared to manual annotation. However, these methods lack quick adaptability to ambiguous and noisy data, which is a challenge in CT volumes containing lung lesions from COVID-19 patients. In this work, we propose an adaptive multi-scale online likelihood network (MONet) that adaptively learns in a data-efficient online setting from both an initial automatic segmentation and user interactions providing corrections. We achieve adaptive learning by proposing an adaptive loss that extends the influence of user-provided interaction to neighboring regions with similar features. In addition, we propose a data-efficient probability-guided pruning method that discards uncertain and redundant labels in the initial segmentation to enable efficient online training and inference. Our proposed method was evaluated by an expert in a blinded comparative study on COVID-19 lung lesion annotation task in CT. Our approach achieved 5.86% higher Dice score with 24.67% less perceived NASA-TLX workload score than the state-of-the-art. Source code is available at: https://github.com/masadcv/MONet-MONAILabel