Abstract:The ability to recover MRI signal from noise is key to achieve fast acquisition, accurate quantification, and high image quality. Past work has shown convolutional neural networks can be used with abundant and paired low and high-SNR images for training. However, for applications where high-SNR data is difficult to produce at scale (e.g. with aggressive acceleration, high resolution, or low field strength), training a new denoising network using a large quantity of high-SNR images can be infeasible. In this study, we overcome this limitation by improving the generalization of denoising models, enabling application to many settings beyond what appears in the training data. Specifically, we a) develop a training scheme that uses complex MRIs reconstructed in the SNR units (i.e., the images have a fixed noise level, SNR unit training) and augments images with realistic noise based on coil g-factor, and b) develop a novel imaging transformer (imformer) to handle 2D, 2D+T, and 3D MRIs in one model architecture. Through empirical evaluation, we show this combination improves performance compared to CNN models and improves generalization, enabling a denoising model to be used across field-strengths, image contrasts, and anatomy.
Abstract:Vision-language models (VLMs), such as CLIP and ALIGN, are generally trained on datasets consisting of image-caption pairs obtained from the web. However, real-world multimodal datasets, such as healthcare data, are significantly more complex: each image (e.g. X-ray) is often paired with text (e.g. physician report) that describes many distinct attributes occurring in fine-grained regions of the image. We refer to these samples as exhibiting high pairwise complexity, since each image-text pair can be decomposed into a large number of region-attribute pairings. The extent to which VLMs can capture fine-grained relationships between image regions and textual attributes when trained on such data has not been previously evaluated. The first key contribution of this work is to demonstrate through systematic evaluations that as the pairwise complexity of the training dataset increases, standard VLMs struggle to learn region-attribute relationships, exhibiting performance degradations of up to 37% on retrieval tasks. In order to address this issue, we introduce ViLLA as our second key contribution. ViLLA, which is trained to capture fine-grained region-attribute relationships from complex datasets, involves two components: (a) a lightweight, self-supervised mapping model to decompose image-text samples into region-attribute pairs, and (b) a contrastive VLM to learn representations from generated region-attribute pairs. We demonstrate with experiments across four domains (synthetic, product, medical, and natural images) that ViLLA outperforms comparable VLMs on fine-grained reasoning tasks, such as zero-shot object detection (up to 3.6 AP50 points on COCO and 0.6 mAP points on LVIS) and retrieval (up to 14.2 R-Precision points).