Abstract:Pediatric Emergency Department (PED) overcrowding presents a significant global challenge, prompting the need for efficient solutions. This paper introduces the BioBridge framework, a novel approach that applies Natural Language Processing (NLP) to Electronic Medical Records (EMRs) in written free-text form to enhance decision-making in PED. In non-English speaking countries, such as South Korea, EMR data is often written in a Code-Switching (CS) format that mixes the native language with English, with most code-switched English words having clinical significance. The BioBridge framework consists of two core modules: "bridging modality in context" and "unified bio-embedding." The "bridging modality in context" module improves the contextual understanding of bilingual and code-switched EMRs. In the "unified bio-embedding" module, the knowledge of the model trained in the medical domain is injected into the encoder-based model to bridge the gap between the medical and general domains. Experimental results demonstrate that the proposed BioBridge significantly performance traditional machine learning and pre-trained encoder-based models on several metrics, including F1 score, area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and Brier score. Specifically, BioBridge-XLM achieved enhancements of 0.85% in F1 score, 0.75% in AUROC, and 0.76% in AUPRC, along with a notable 3.04% decrease in the Brier score, demonstrating marked improvements in accuracy, reliability, and prediction calibration over the baseline XLM model. The source code will be made publicly available.
Abstract:This paper examines the Code-Switching (CS) phenomenon where two languages intertwine within a single utterance. There exists a noticeable need for research on the CS between English and Korean. We highlight that the current Equivalence Constraint (EC) theory for CS in other languages may only partially capture English-Korean CS complexities due to the intrinsic grammatical differences between the languages. We introduce a novel Koglish dataset tailored for English-Korean CS scenarios to mitigate such challenges. First, we constructed the Koglish-GLUE dataset to demonstrate the importance and need for CS datasets in various tasks. We found the differential outcomes of various foundation multilingual language models when trained on a monolingual versus a CS dataset. Motivated by this, we hypothesized that SimCSE, which has shown strengths in monolingual sentence embedding, would have limitations in CS scenarios. We construct a novel Koglish-NLI (Natural Language Inference) dataset using a CS augmentation-based approach to verify this. From this CS-augmented dataset Koglish-NLI, we propose a unified contrastive learning and augmentation method for code-switched embeddings, ConCSE, highlighting the semantics of CS sentences. Experimental results validate the proposed ConCSE with an average performance enhancement of 1.77\% on the Koglish-STS(Semantic Textual Similarity) tasks.