Abstract:The synthesis of high-quality 3D assets from textual or visual inputs has become a central objective in modern generative modeling. Despite the proliferation of 3D generation algorithms, they frequently grapple with challenges such as multi-view inconsistency, slow generation times, low fidelity, and surface reconstruction problems. While some studies have addressed some of these issues, a comprehensive solution remains elusive. In this paper, we introduce \textbf{CaPa}, a carve-and-paint framework that generates high-fidelity 3D assets efficiently. CaPa employs a two-stage process, decoupling geometry generation from texture synthesis. Initially, a 3D latent diffusion model generates geometry guided by multi-view inputs, ensuring structural consistency across perspectives. Subsequently, leveraging a novel, model-agnostic Spatially Decoupled Attention, the framework synthesizes high-resolution textures (up to 4K) for a given geometry. Furthermore, we propose a 3D-aware occlusion inpainting algorithm that fills untextured regions, resulting in cohesive results across the entire model. This pipeline generates high-quality 3D assets in less than 30 seconds, providing ready-to-use outputs for commercial applications. Experimental results demonstrate that CaPa excels in both texture fidelity and geometric stability, establishing a new standard for practical, scalable 3D asset generation.
Abstract:We propose GaussianTalker, a novel framework for real-time generation of pose-controllable talking heads. It leverages the fast rendering capabilities of 3D Gaussian Splatting (3DGS) while addressing the challenges of directly controlling 3DGS with speech audio. GaussianTalker constructs a canonical 3DGS representation of the head and deforms it in sync with the audio. A key insight is to encode the 3D Gaussian attributes into a shared implicit feature representation, where it is merged with audio features to manipulate each Gaussian attribute. This design exploits the spatial-aware features and enforces interactions between neighboring points. The feature embeddings are then fed to a spatial-audio attention module, which predicts frame-wise offsets for the attributes of each Gaussian. It is more stable than previous concatenation or multiplication approaches for manipulating the numerous Gaussians and their intricate parameters. Experimental results showcase GaussianTalker's superiority in facial fidelity, lip synchronization accuracy, and rendering speed compared to previous methods. Specifically, GaussianTalker achieves a remarkable rendering speed up to 120 FPS, surpassing previous benchmarks. Our code is made available at https://github.com/KU-CVLAB/GaussianTalker/ .
Abstract:Recent methods for audio-driven talking head synthesis often optimize neural radiance fields (NeRF) on a monocular talking portrait video, leveraging its capability to render high-fidelity and 3D-consistent novel-view frames. However, they often struggle to reconstruct complete face geometry due to the absence of comprehensive 3D information in the input monocular videos. In this paper, we introduce a novel audio-driven talking head synthesis framework, called Talk3D, that can faithfully reconstruct its plausible facial geometries by effectively adopting the pre-trained 3D-aware generative prior. Given the personalized 3D generative model, we present a novel audio-guided attention U-Net architecture that predicts the dynamic face variations in the NeRF space driven by audio. Furthermore, our model is further modulated by audio-unrelated conditioning tokens which effectively disentangle variations unrelated to audio features. Compared to existing methods, our method excels in generating realistic facial geometries even under extreme head poses. We also conduct extensive experiments showing our approach surpasses state-of-the-art benchmarks in terms of both quantitative and qualitative evaluations.