Korea University
Abstract:Despite the versatility of pre-trained language models (PLMs) across domains, their large memory footprints pose significant challenges in federated learning (FL), where the training model has to be distributed between a server and clients. One potential solution to bypass such constraints might be the use of parameter-efficient fine-tuning (PEFT) in the context of FL. However, we have observed that typical PEFT tends to severely suffer from heterogeneity among clients in FL scenarios, resulting in unstable and slow convergence. In this paper, we propose Client-Customized Adaptation (C2A), a novel hypernetwork-based FL framework that generates client-specific adapters by conditioning the client information. With the effectiveness of the hypernetworks in generating customized weights through learning to adopt the different characteristics of inputs, C2A can maximize the utility of shared model parameters while minimizing the divergence caused by client heterogeneity. To verify the efficacy of C2A, we perform extensive evaluations on FL scenarios involving heterogeneity in label and language distributions. Comprehensive evaluation results clearly support the superiority of C2A in terms of both efficiency and effectiveness in FL scenarios.
Abstract:Parameter-efficient fine-tuning (PEFT) has enabled the efficient optimization of cumbersome language models in real-world settings. However, as datasets in such environments often contain noisy labels that adversely affect performance, PEFT methods are inevitably exposed to noisy labels. Despite this challenge, the adaptability of PEFT to noisy environments remains underexplored. To bridge this gap, we investigate various PEFT methods under noisy labels. Interestingly, our findings reveal that PEFT has difficulty in memorizing noisy labels due to its inherently limited capacity, resulting in robustness. However, we also find that such limited capacity simultaneously makes PEFT more vulnerable to interference of noisy labels, impeding the learning of clean samples. To address this issue, we propose Clean Routing (CleaR), a novel routing-based PEFT approach that adaptively activates PEFT modules. In CleaR, PEFT modules are preferentially exposed to clean data while bypassing the noisy ones, thereby minimizing the noisy influence. To verify the efficacy of CleaR, we perform extensive experiments on diverse configurations of noisy labels. The results convincingly demonstrate that CleaR leads to substantially improved performance in noisy environments.
Abstract:We introduce a novel continued pre-training method, MELT (MatEriaLs-aware continued pre-Training), specifically designed to efficiently adapt the pre-trained language models (PLMs) for materials science. Unlike previous adaptation strategies that solely focus on constructing domain-specific corpus, MELT comprehensively considers both the corpus and the training strategy, given that materials science corpus has distinct characteristics from other domains. To this end, we first construct a comprehensive materials knowledge base from the scientific corpus by building semantic graphs. Leveraging this extracted knowledge, we integrate a curriculum into the adaptation process that begins with familiar and generalized concepts and progressively moves toward more specialized terms. We conduct extensive experiments across diverse benchmarks to verify the effectiveness and generality of MELT. A comprehensive evaluation convincingly supports the strength of MELT, demonstrating superior performance compared to existing continued pre-training methods. The in-depth analysis also shows that MELT enables PLMs to effectively represent materials entities compared to the existing adaptation methods, thereby highlighting its broad applicability across a wide spectrum of materials science.
Abstract:Recent approaches to zero-shot commonsense reasoning have enabled Pre-trained Language Models (PLMs) to learn a broad range of commonsense knowledge without being tailored to specific situations. However, they often suffer from human reporting bias inherent in textual commonsense knowledge, leading to discrepancies in understanding between PLMs and humans. In this work, we aim to bridge this gap by introducing an additional information channel to PLMs. We propose Imagine (Machine Imagination-based Reasoning), a novel zero-shot commonsense reasoning framework designed to complement textual inputs with visual signals derived from machine-generated images. To achieve this, we enhance PLMs with imagination capabilities by incorporating an image generator into the reasoning process. To guide PLMs in effectively leveraging machine imagination, we create a synthetic pre-training dataset that simulates visual question-answering. Our extensive experiments on diverse reasoning benchmarks and analysis show that Imagine outperforms existing methods by a large margin, highlighting the strength of machine imagination in mitigating reporting bias and enhancing generalization capabilities.
Abstract:Large Language Models (LLMs) have displayed remarkable performances across various complex tasks by leveraging Chain-of-Thought (CoT) prompting. Recently, studies have proposed a Knowledge Distillation (KD) approach, reasoning distillation, which transfers such reasoning ability of LLMs through fine-tuning language models of multi-step rationales generated by LLM teachers. However, they have inadequately considered two challenges regarding insufficient distillation sets from the LLM teacher model, in terms of 1) data quality and 2) soft label provision. In this paper, we propose Mentor-KD, which effectively distills the multi-step reasoning capability of LLMs to smaller LMs while addressing the aforementioned challenges. Specifically, we exploit a mentor, intermediate-sized task-specific fine-tuned model, to augment additional CoT annotations and provide soft labels for the student model during reasoning distillation. We conduct extensive experiments and confirm Mentor-KD's effectiveness across various models and complex reasoning tasks.
Abstract:Towards human-level visual understanding, visual commonsense generation has been introduced to generate commonsense inferences beyond images. However, current research on visual commonsense generation has overlooked an important human cognitive ability: generating descriptive and diverse inferences. In this work, we propose a novel visual commonsense generation framework, called DIVE, which aims to improve the descriptiveness and diversity of generated inferences. DIVE involves two methods, generic inference filtering and contrastive retrieval learning, which address the limitations of existing visual commonsense resources and training objectives. Experimental results verify that DIVE outperforms state-of-the-art models for visual commonsense generation in terms of both descriptiveness and diversity, while showing a superior quality in generating unique and novel inferences. Notably, DIVE achieves human-level descriptiveness and diversity on Visual Commonsense Graphs. Furthermore, human evaluations confirm that DIVE aligns closely with human judgments on descriptiveness and diversity\footnote{Our code and dataset are available at https://github.com/Park-ing-lot/DIVE.
Abstract:Biases in the dataset often enable the model to achieve high performance on in-distribution data, while poorly performing on out-of-distribution data. To mitigate the detrimental effect of the bias on the networks, previous works have proposed debiasing methods that down-weight the biased examples identified by an auxiliary model, which is trained with explicit bias labels. However, finding a type of bias in datasets is a costly process. Therefore, recent studies have attempted to make the auxiliary model biased without the guidance (or annotation) of bias labels, by constraining the model's training environment or the capability of the model itself. Despite the promising debiasing results of recent works, the multi-class learning objective, which has been naively used to train the auxiliary model, may harm the bias mitigation effect due to its regularization effect and competitive nature across classes. As an alternative, we propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model, coined bias experts. Specifically, each bias expert is trained on a binary classification task derived from the multi-class classification task via the One-vs-Rest approach. Experimental results demonstrate that our proposed strategy improves the bias identification ability of the auxiliary model. Consequently, our debiased model consistently outperforms the state-of-the-art on various challenge datasets.
Abstract:Structure pruning is an effective method to compress and accelerate neural networks. While filter and channel pruning are preferable to other structure pruning methods in terms of realistic acceleration and hardware compatibility, pruning methods with a finer granularity, such as intra-channel pruning, are expected to be capable of yielding more compact and computationally efficient networks. Typical intra-channel pruning methods utilize a static and hand-crafted pruning granularity due to a large search space, which leaves room for improvement in their pruning performance. In this work, we introduce a novel structure pruning method, termed as dynamic structure pruning, to identify optimal pruning granularities for intra-channel pruning. In contrast to existing intra-channel pruning methods, the proposed method automatically optimizes dynamic pruning granularities in each layer while training deep neural networks. To achieve this, we propose a differentiable group learning method designed to efficiently learn a pruning granularity based on gradient-based learning of filter groups. The experimental results show that dynamic structure pruning achieves state-of-the-art pruning performance and better realistic acceleration on a GPU compared with channel pruning. In particular, it reduces the FLOPs of ResNet50 by 71.85% without accuracy degradation on the ImageNet dataset. Our code is available at https://github.com/irishev/DSP.
Abstract:Masked language modeling (MLM) has been widely used for pre-training effective bidirectional representations, but incurs substantial training costs. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a language model. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a carefully-designed linguistic difficulty criterion that evaluates the MLM difficulty of each token. Second, we construct a curriculum that gradually masks words related to the previously masked words by retrieving a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.
Abstract:In this paper, we propose Dynamic Self-Attention (DSA), a new self-attention mechanism for sentence embedding. We design DSA by modifying dynamic routing in capsule network (Sabouretal.,2017) for natural language processing. DSA attends to informative words with a dynamic weight vector. We achieve new state-of-the-art results among sentence encoding methods in Stanford Natural Language Inference (SNLI) dataset with the least number of parameters, while showing comparative results in Stanford Sentiment Treebank (SST) dataset.