Korea University
Abstract:Despite the versatility of pre-trained language models (PLMs) across domains, their large memory footprints pose significant challenges in federated learning (FL), where the training model has to be distributed between a server and clients. One potential solution to bypass such constraints might be the use of parameter-efficient fine-tuning (PEFT) in the context of FL. However, we have observed that typical PEFT tends to severely suffer from heterogeneity among clients in FL scenarios, resulting in unstable and slow convergence. In this paper, we propose Client-Customized Adaptation (C2A), a novel hypernetwork-based FL framework that generates client-specific adapters by conditioning the client information. With the effectiveness of the hypernetworks in generating customized weights through learning to adopt the different characteristics of inputs, C2A can maximize the utility of shared model parameters while minimizing the divergence caused by client heterogeneity. To verify the efficacy of C2A, we perform extensive evaluations on FL scenarios involving heterogeneity in label and language distributions. Comprehensive evaluation results clearly support the superiority of C2A in terms of both efficiency and effectiveness in FL scenarios.
Abstract:We introduce a novel continued pre-training method, MELT (MatEriaLs-aware continued pre-Training), specifically designed to efficiently adapt the pre-trained language models (PLMs) for materials science. Unlike previous adaptation strategies that solely focus on constructing domain-specific corpus, MELT comprehensively considers both the corpus and the training strategy, given that materials science corpus has distinct characteristics from other domains. To this end, we first construct a comprehensive materials knowledge base from the scientific corpus by building semantic graphs. Leveraging this extracted knowledge, we integrate a curriculum into the adaptation process that begins with familiar and generalized concepts and progressively moves toward more specialized terms. We conduct extensive experiments across diverse benchmarks to verify the effectiveness and generality of MELT. A comprehensive evaluation convincingly supports the strength of MELT, demonstrating superior performance compared to existing continued pre-training methods. The in-depth analysis also shows that MELT enables PLMs to effectively represent materials entities compared to the existing adaptation methods, thereby highlighting its broad applicability across a wide spectrum of materials science.
Abstract:Recent approaches to zero-shot commonsense reasoning have enabled Pre-trained Language Models (PLMs) to learn a broad range of commonsense knowledge without being tailored to specific situations. However, they often suffer from human reporting bias inherent in textual commonsense knowledge, leading to discrepancies in understanding between PLMs and humans. In this work, we aim to bridge this gap by introducing an additional information channel to PLMs. We propose Imagine (Machine Imagination-based Reasoning), a novel zero-shot commonsense reasoning framework designed to complement textual inputs with visual signals derived from machine-generated images. To achieve this, we enhance PLMs with imagination capabilities by incorporating an image generator into the reasoning process. To guide PLMs in effectively leveraging machine imagination, we create a synthetic pre-training dataset that simulates visual question-answering. Our extensive experiments on diverse reasoning benchmarks and analysis show that Imagine outperforms existing methods by a large margin, highlighting the strength of machine imagination in mitigating reporting bias and enhancing generalization capabilities.
Abstract:Towards human-level visual understanding, visual commonsense generation has been introduced to generate commonsense inferences beyond images. However, current research on visual commonsense generation has overlooked an important human cognitive ability: generating descriptive and diverse inferences. In this work, we propose a novel visual commonsense generation framework, called DIVE, which aims to improve the descriptiveness and diversity of generated inferences. DIVE involves two methods, generic inference filtering and contrastive retrieval learning, which address the limitations of existing visual commonsense resources and training objectives. Experimental results verify that DIVE outperforms state-of-the-art models for visual commonsense generation in terms of both descriptiveness and diversity, while showing a superior quality in generating unique and novel inferences. Notably, DIVE achieves human-level descriptiveness and diversity on Visual Commonsense Graphs. Furthermore, human evaluations confirm that DIVE aligns closely with human judgments on descriptiveness and diversity\footnote{Our code and dataset are available at https://github.com/Park-ing-lot/DIVE.
Abstract:Structure pruning is an effective method to compress and accelerate neural networks. While filter and channel pruning are preferable to other structure pruning methods in terms of realistic acceleration and hardware compatibility, pruning methods with a finer granularity, such as intra-channel pruning, are expected to be capable of yielding more compact and computationally efficient networks. Typical intra-channel pruning methods utilize a static and hand-crafted pruning granularity due to a large search space, which leaves room for improvement in their pruning performance. In this work, we introduce a novel structure pruning method, termed as dynamic structure pruning, to identify optimal pruning granularities for intra-channel pruning. In contrast to existing intra-channel pruning methods, the proposed method automatically optimizes dynamic pruning granularities in each layer while training deep neural networks. To achieve this, we propose a differentiable group learning method designed to efficiently learn a pruning granularity based on gradient-based learning of filter groups. The experimental results show that dynamic structure pruning achieves state-of-the-art pruning performance and better realistic acceleration on a GPU compared with channel pruning. In particular, it reduces the FLOPs of ResNet50 by 71.85% without accuracy degradation on the ImageNet dataset. Our code is available at https://github.com/irishev/DSP.
Abstract:Masked language modeling (MLM) has been widely used for pre-training effective bidirectional representations, but incurs substantial training costs. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a language model. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a carefully-designed linguistic difficulty criterion that evaluates the MLM difficulty of each token. Second, we construct a curriculum that gradually masks words related to the previously masked words by retrieving a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.