Abstract:The ocean profoundly influences human activities and plays a critical role in climate regulation. Our understanding has improved over the last decades with the advent of satellite remote sensing data, allowing us to capture essential quantities over the globe, e.g., sea surface height (SSH). However, ocean satellite data presents challenges for information extraction due to their sparsity and irregular sampling, signal complexity, and noise. Machine learning (ML) techniques have demonstrated their capabilities in dealing with large-scale, complex signals. Therefore we see an opportunity for ML models to harness the information contained in ocean satellite data. However, data representation and relevant evaluation metrics can be the defining factors when determining the success of applied ML. The processing steps from the raw observation data to a ML-ready state and from model outputs to interpretable quantities require domain expertise, which can be a significant barrier to entry for ML researchers. OceanBench is a unifying framework that provides standardized processing steps that comply with domain-expert standards. It provides plug-and-play data and pre-configured pipelines for ML researchers to benchmark their models and a transparent configurable framework for researchers to customize and extend the pipeline for their tasks. In this work, we demonstrate the OceanBench framework through a first edition dedicated to SSH interpolation challenges. We provide datasets and ML-ready benchmarking pipelines for the long-standing problem of interpolating observations from simulated ocean satellite data, multi-modal and multi-sensor fusion issues, and transfer-learning to real ocean satellite observations. The OceanBench framework is available at github.com/jejjohnson/oceanbench and the dataset registry is available at github.com/quentinf00/oceanbench-data-registry.
Abstract:The upcoming Surface Water Ocean Topography (SWOT) satellite altimetry mission is expected to yield two-dimensional high-resolution measurements of Sea Surface Height (SSH), thus allowing for a better characterization of the mesoscale and submesoscale eddy field. However, to fulfill the promises of this mission, filtering the tidal component of the SSH measurements is necessary. This challenging problem is crucial since the posterior studies done by physical oceanographers using SWOT data will depend heavily on the selected filtering schemes. In this paper, we cast this problem into a supervised learning framework and propose the use of convolutional neural networks (ConvNets) to estimate fields free of internal tide signals. Numerical experiments based on an advanced North Atlantic simulation of the ocean circulation (eNATL60) show that our ConvNet considerably reduces the imprint of the internal waves in SSH data even in regions unseen by the neural network. We also investigate the relevance of considering additional data from other sea surface variables such as sea surface temperature (SST).
Abstract:We introduce a new strategy designed to help physicists discover hidden laws governing dynamical systems. We propose to use machine learning automatic differentiation libraries to develop hybrid numerical models that combine components based on prior physical knowledge with components based on neural networks. In these architectures, named Deep Neural Numerical Models (DNNMs), the neural network components are used as building-blocks then deployed for learning hidden variables of underlying physical laws governing dynamical systems. In this paper, we illustrate an application of DNNMs to upper ocean dynamics, more precisely the dynamics of a sea surface tracer, the Sea Surface Height (SSH). We develop an advection-based fully differentiable numerical scheme, where parts of the computations can be replaced with learnable ConvNets, and make connections with the single-layer Quasi-Geostrophic (QG) model, a baseline theory in physical oceanography developed decades ago.