Abstract:Optimal Interpolation (OI) is a widely used, highly trusted algorithm for interpolation and reconstruction problems in geosciences. With the influx of more satellite missions, we have access to more and more observations and it is becoming more pertinent to take advantage of these observations in applications such as forecasting and reanalysis. With the increase in the volume of available data, scalability remains an issue for standard OI and it prevents many practitioners from effectively and efficiently taking advantage of these large sums of data to learn the model hyperparameters. In this work, we leverage recent advances in Neural Fields (NerFs) as an alternative to the OI framework where we show how they can be easily applied to standard reconstruction problems in physical oceanography. We illustrate the relevance of NerFs for gap-filling of sparse measurements of sea surface height (SSH) via satellite altimetry and demonstrate how NerFs are scalable with comparable results to the standard OI. We find that NerFs are a practical set of methods that can be readily applied to geoscience interpolation problems and we anticipate a wider adoption in the future.
Abstract:The upcoming Surface Water Ocean Topography (SWOT) satellite altimetry mission is expected to yield two-dimensional high-resolution measurements of Sea Surface Height (SSH), thus allowing for a better characterization of the mesoscale and submesoscale eddy field. However, to fulfill the promises of this mission, filtering the tidal component of the SSH measurements is necessary. This challenging problem is crucial since the posterior studies done by physical oceanographers using SWOT data will depend heavily on the selected filtering schemes. In this paper, we cast this problem into a supervised learning framework and propose the use of convolutional neural networks (ConvNets) to estimate fields free of internal tide signals. Numerical experiments based on an advanced North Atlantic simulation of the ocean circulation (eNATL60) show that our ConvNet considerably reduces the imprint of the internal waves in SSH data even in regions unseen by the neural network. We also investigate the relevance of considering additional data from other sea surface variables such as sea surface temperature (SST).
Abstract:We introduce a new strategy designed to help physicists discover hidden laws governing dynamical systems. We propose to use machine learning automatic differentiation libraries to develop hybrid numerical models that combine components based on prior physical knowledge with components based on neural networks. In these architectures, named Deep Neural Numerical Models (DNNMs), the neural network components are used as building-blocks then deployed for learning hidden variables of underlying physical laws governing dynamical systems. In this paper, we illustrate an application of DNNMs to upper ocean dynamics, more precisely the dynamics of a sea surface tracer, the Sea Surface Height (SSH). We develop an advection-based fully differentiable numerical scheme, where parts of the computations can be replaced with learnable ConvNets, and make connections with the single-layer Quasi-Geostrophic (QG) model, a baseline theory in physical oceanography developed decades ago.