Abstract:In this paper, we propose an innovative approach to thoroughly explore dataset features that introduce bias in downstream machine-learning tasks. Depending on the data format, we use different techniques to map instances into a similarity feature space. Our method's ability to adjust the resolution of pairwise similarity provides clear insights into the relationship between the dataset classification complexity and model fairness. Experimental results confirm the promising applicability of the similarity network in promoting fair models. Moreover, leveraging our methodology not only seems promising in providing a fair downstream task such as classification, it also performs well in imputation and augmentation of the dataset satisfying the fairness criteria such as demographic parity and imbalanced classes.
Abstract:A Language Model is a term that encompasses various types of models designed to understand and generate human communication. Large Language Models (LLMs) have gained significant attention due to their ability to process text with human-like fluency and coherence, making them valuable for a wide range of data-related tasks fashioned as pipelines. The capabilities of LLMs in natural language understanding and generation, combined with their scalability, versatility, and state-of-the-art performance, enable innovative applications across various AI-related fields, including eXplainable Artificial Intelligence (XAI), Automated Machine Learning (AutoML), and Knowledge Graphs (KG). Furthermore, we believe these models can extract valuable insights and make data-driven decisions at scale, a practice commonly referred to as Big Data Analytics (BDA). In this position paper, we provide some discussions in the direction of unlocking synergies among these technologies, which can lead to more powerful and intelligent AI solutions, driving improvements in data pipelines across a wide range of applications and domains integrating humans, computers, and knowledge.