Abstract:AI fairness measurements, including tests for equal treatment, often take the form of disaggregated evaluations of AI systems. Such measurements are an important part of Responsible AI operations. These measurements compare system performance across demographic groups or sub-populations and typically require member-level demographic signals such as gender, race, ethnicity, and location. However, sensitive member-level demographic attributes like race and ethnicity can be challenging to obtain and use due to platform choices, legal constraints, and cultural norms. In this paper, we focus on the task of enabling AI fairness measurements on race/ethnicity for \emph{U.S. LinkedIn members} in a privacy-preserving manner. We present the Privacy-Preserving Probabilistic Race/Ethnicity Estimation (PPRE) method for performing this task. PPRE combines the Bayesian Improved Surname Geocoding (BISG) model, a sparse LinkedIn survey sample of self-reported demographics, and privacy-enhancing technologies like secure two-party computation and differential privacy to enable meaningful fairness measurements while preserving member privacy. We provide details of the PPRE method and its privacy guarantees. We then illustrate sample measurement operations. We conclude with a review of open research and engineering challenges for expanding our privacy-preserving fairness measurement capabilities.
Abstract:Operationalizing AI fairness at LinkedIn's scale is challenging not only because there are multiple mutually incompatible definitions of fairness but also because determining what is fair depends on the specifics and context of the product where AI is deployed. Moreover, AI practitioners need clarity on what fairness expectations need to be addressed at the AI level. In this paper, we present the evolving AI fairness framework used at LinkedIn to address these three challenges. The framework disentangles AI fairness by separating out equal treatment and equitable product expectations. Rather than imposing a trade-off between these two commonly opposing interpretations of fairness, the framework provides clear guidelines for operationalizing equal AI treatment complemented with a product equity strategy. This paper focuses on the equal AI treatment component of LinkedIn's AI fairness framework, shares the principles that support it, and illustrates their application through a case study. We hope this paper will encourage other big tech companies to join us in sharing their approach to operationalizing AI fairness at scale, so that together we can keep advancing this constantly evolving field.
Abstract:Fashion is a fast-changing industry where designs are refreshed at large scale every season. Moreover, it faces huge challenge of unsold inventory as not all designs appeal to customers. This puts designers under significant pressure. Firstly, they need to create innumerous fresh designs. Secondly, they need to create designs that appeal to customers. Although we see advancements in approaches to help designers analyzing consumers, often such insights are too many. Creating all possible designs with those insights is time consuming. In this paper, we propose a system of AI assistants that assists designers in their design journey. The proposed system assists designers in analyzing different selling/trending attributes of apparels. We propose two design generation assistants namely Apparel-Style-Merge and Apparel-Style-Transfer. Apparel-Style-Merge generates new designs by combining high level components of apparels whereas Apparel-Style-Transfer generates multiple customization of apparels by applying different styles, colors and patterns. We compose a new dataset, named DeepAttributeStyle, with fine-grained annotation of landmarks of different apparel components such as neck, sleeve etc. The proposed system is evaluated on a user group consisting of people with and without design background. Our evaluation result demonstrates that our approach generates high quality designs that can be easily used in fabrication. Moreover, the suggested designs aid to the designers creativity.