Abstract:Crowd counting, for estimating the number of people in a crowd using vision-based computer techniques, has attracted much interest in the research community. Although many attempts have been reported, real-world problems, such as huge variation in subjects' sizes in images and serious occlusion among people, make it still a challenging problem. In this paper, we propose an Adaptive Counting Convolutional Neural Network (A-CCNN) and consider the scale variation of objects in a frame adaptively so as to improve the accuracy of counting. Our method takes advantages of contextual information to provide more accurate and adaptive density maps and crowd counting in a scene. Extensively experimental evaluation is conducted using different benchmark datasets for object-counting and shows that the proposed approach is effective and outperforms state-of-the-art approaches.
Abstract:In this paper, we aim at tackling the problem of crowd counting in extremely high-density scenes, which contain hundreds, or even thousands of people. We begin by a comprehensive analysis of the most widely used density map-based methods, and demonstrate how easily existing methods are affected by the inhomogeneous density distribution problem, e.g., causing them to be sensitive to outliers, or be hard to optimized. We then present an extremely simple solution to the inhomogeneous density distribution problem, which can be intuitively summarized as extending the density map from 2D to 3D, with the extra dimension implicitly indicating the density level. Such solution can be implemented by a single Density-Aware Network, which is not only easy to train, but also can achieve the state-of-art performance on various challenging datasets.