Abstract:Recent deep generative models (DGMs) such as generative adversarial networks (GANs) and diffusion probabilistic models (DPMs) have shown their impressive ability in generating high-fidelity photorealistic images. Although looking appealing to human eyes, training a model on purely synthetic images for downstream image processing tasks like image classification often results in an undesired performance drop compared to training on real data. Previous works have demonstrated that enhancing a real dataset with synthetic images from DGMs can be beneficial. However, the improvements were subjected to certain circumstances and yet were not comparable to adding the same number of real images. In this work, we propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset. We hypothesize that the Content Gap accounts for a large portion of the performance drop when using synthetic images from DGM and propose strategies to better utilize them in downstream tasks. Extensive experiments on multiple datasets showcase that our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data (Data Augmentation), particularly in the data-scarce scenario.
Abstract:The task of few-shot GAN adaptation aims to adapt a pre-trained GAN model to a small dataset with very few training images. While existing methods perform well when the dataset for pre-training is structurally similar to the target dataset, the approaches suffer from training instabilities or memorization issues when the objects in the two domains have a very different structure. To mitigate this limitation, we propose a new smoothness similarity regularization that transfers the inherently learned smoothness of the pre-trained GAN to the few-shot target domain even if the two domains are very different. We evaluate our approach by adapting an unconditional and a class-conditional GAN to diverse few-shot target domains. Our proposed method significantly outperforms prior few-shot GAN adaptation methods in the challenging case of structurally dissimilar source-target domains, while performing on par with the state of the art for similar source-target domains.
Abstract:Data-hunger and data-imbalance are two major pitfalls in many deep learning approaches. For example, on highly optimized production lines, defective samples are hardly acquired while non-defective samples come almost for free. The defects however often seem to resemble each other, e.g., scratches on different products may only differ in a few characteristics. In this work, we introduce a framework, Defect Transfer GAN (DT-GAN), which learns to represent defect types independent of and across various background products and yet can apply defect-specific styles to generate realistic defective images. An empirical study on the MVTec AD and two additional datasets showcase DT-GAN outperforms state-of-the-art image synthesis methods w.r.t. sample fidelity and diversity in defect generation. We further demonstrate benefits for a critical downstream task in manufacturing -- defect classification. Results show that the augmented data from DT-GAN provides consistent gains even in the few samples regime and reduces the error rate up to 51% compared to both traditional and advanced data augmentation methods.