Abstract:Recovering accurate architecture from large-scale legacy software is hindered by architectural drift, missing relations, and the limited context of Large Language Models (LLMs). We present ArchAgent, a scalable agent-based framework that combines static analysis, adaptive code segmentation, and LLM-powered synthesis to reconstruct multiview, business-aligned architectures from cross-repository codebases. ArchAgent introduces scalable diagram generation with contextual pruning and integrates cross-repository data to identify business-critical modules. Evaluations of typical large-scale GitHub projects show significant improvements over existing benchmarks. An ablation study confirms that dependency context improves the accuracy of generated architectures of production-level repositories, and a real-world case study demonstrates effective recovery of critical business logics from legacy projects. The dataset is available at https://github.com/panrusheng/arch-eval-benchmark.
Abstract:A computational graph in a deep neural network (DNN) denotes a specific data flow diagram (DFD) composed of many tensors and operators. Existing toolkits for visualizing computational graphs are not applicable when the structure is highly complicated and large-scale (e.g., BERT [1]). To address this problem, we propose leveraging a suite of visual simplification techniques, including a cycle-removing method, a module-based edge-pruning algorithm, and an isomorphic subgraph stacking strategy. We design and implement an interactive visualization system that is suitable for computational graphs with up to 10 thousand elements. Experimental results and usage scenarios demonstrate that our tool reduces 60% elements on average and hence enhances the performance for recognizing and diagnosing DNN models. Our contributions are integrated into an open-source DNN visualization toolkit, namely, MindInsight [2].