Abstract:Whether Large Language Models (LLMs) truly possess human-like Theory of Mind (ToM) capabilities has garnered increasing attention. However, existing benchmarks remain largely restricted to narrow paradigms like false belief tasks, failing to capture the full spectrum of human cognitive mechanisms. We introduce CogToM, a comprehensive, theoretically grounded benchmark comprising over 8000 bilingual instances across 46 paradigms, validated by 49 human annotator.A systematic evaluation of 22 representative models, including frontier models like GPT-5.1 and Qwen3-Max, reveals significant performance heterogeneities and highlights persistent bottlenecks in specific dimensions. Further analysis based on human cognitive patterns suggests potential divergences between LLM and human cognitive structures. CogToM offers a robust instrument and perspective for investigating the evolving cognitive boundaries of LLMs.
Abstract:Spiking Neural Networks (SNNs) utilize spike-based activations to mimic the brain's energy-efficient information processing. However, the binary and discontinuous nature of spike activations causes vanishing gradients, making adversarial robustness evaluation via gradient descent unreliable. While improved surrogate gradient methods have been proposed, their effectiveness under strong adversarial attacks remains unclear. We propose a more reliable framework for evaluating SNN adversarial robustness. We theoretically analyze the degree of gradient vanishing in surrogate gradients and introduce the Adaptive Sharpness Surrogate Gradient (ASSG), which adaptively evolves the shape of the surrogate function according to the input distribution during attack iterations, thereby enhancing gradient accuracy while mitigating gradient vanishing. In addition, we design an adversarial attack with adaptive step size under the $L_\infty$ constraint-Stable Adaptive Projected Gradient Descent (SA-PGD), achieving faster and more stable convergence under imprecise gradients. Extensive experiments show that our approach substantially increases attack success rates across diverse adversarial training schemes, SNN architectures and neuron models, providing a more generalized and reliable evaluation of SNN adversarial robustness. The experimental results further reveal that the robustness of current SNNs has been significantly overestimated and highlighting the need for more dependable adversarial training methods.
Abstract:Many mobile apps are inaccessible, thereby excluding people from their potential benefits. Existing rule-based accessibility checkers aim to mitigate these failures by identifying errors early during development but are constrained in the types of errors they can detect. We present ScreenAudit, an LLM-powered system designed to traverse mobile app screens, extract metadata and transcripts, and identify screen reader accessibility errors overlooked by existing checkers. We recruited six accessibility experts including one screen reader user to evaluate ScreenAudit's reports across 14 unique app screens. Our findings indicate that ScreenAudit achieves an average coverage of 69.2%, compared to only 31.3% with a widely-used accessibility checker. Expert feedback indicated that ScreenAudit delivered higher-quality feedback and addressed more aspects of screen reader accessibility compared to existing checkers, and that ScreenAudit would benefit app developers in real-world settings.