Abstract:The recent development of online static map element (a.k.a. HD map) construction algorithms has raised a vast demand for data with ground truth annotations. However, available public datasets currently cannot provide high-quality training data regarding consistency and accuracy. For instance, the manual labelled (low efficiency) nuScenes still contains misalignment and inconsistency between the HD maps and images (e.g., around 8.03 pixels reprojection error on average). To this end, we present CAMAv2: a vision-centric approach for Consistent and Accurate Map Annotation. Without LiDAR inputs, our proposed framework can still generate high-quality 3D annotations of static map elements. Specifically, the annotation can achieve high reprojection accuracy across all surrounding cameras and is spatial-temporal consistent across the whole sequence. We apply our proposed framework to the popular nuScenes dataset to provide efficient and highly accurate annotations. Compared with the original nuScenes static map element, our CAMAv2 annotations achieve lower reprojection errors (e.g., 4.96 vs. 8.03 pixels). Models trained with annotations from CAMAv2 also achieve lower reprojection errors (e.g., 5.62 vs. 8.43 pixels).
Abstract:The recent development of online static map element (a.k.a. HD Map) construction algorithms has raised a vast demand for data with ground truth annotations. However, available public datasets currently cannot provide high-quality training data regarding consistency and accuracy. To this end, we present CAMA: a vision-centric approach for Consistent and Accurate Map Annotation. Without LiDAR inputs, our proposed framework can still generate high-quality 3D annotations of static map elements. Specifically, the annotation can achieve high reprojection accuracy across all surrounding cameras and is spatial-temporal consistent across the whole sequence. We apply our proposed framework to the popular nuScenes dataset to provide efficient and highly accurate annotations. Compared with the original nuScenes static map element, models trained with annotations from CAMA achieve lower reprojection errors (e.g., 4.73 vs. 8.03 pixels).
Abstract:Large-scale road surface reconstruction is becoming important to autonomous driving systems, as it provides valuable training and testing data effectively. In this paper, we introduce a simple yet efficient method, RoMe, for large-scale Road surface reconstruction via Mesh representations. To simplify the problem, RoMe decomposes a 3D road surface into a triangle-mesh and a multilayer perception network to model the road elevation implicitly. To retain fine surface details, each mesh vertex has two extra attributes, namely color and semantics. To improve the efficiency of RoMe in large-scale environments, a novel waypoint sampling method is introduced. As such, RoMe can properly preserve road surface details, with only linear computational complexity to road areas. In addition, to improve the accuracy of RoMe, extrinsics optimization is proposed to mitigate inaccurate extrinsic calibrations. Experimental results on popular public datasets also demonstrate the high efficiency and accuracy of RoMe.