Abstract:Despite their powerful semantic understanding and code generation capabilities, Large Language Models (LLMs) still face challenges when dealing with complex tasks. Multi agent strategy generation and motion control are highly complex domains that inherently require experts from multiple fields to collaborate. To enhance multi agent strategy generation and motion control, we propose an innovative architecture that employs the concept of a cloud edge end hierarchical structure. By leveraging multiple large language models with distinct areas of expertise, we can efficiently generate strategies and perform task decomposition. Introducing the cosine similarity approach,aligning task decomposition instructions with robot task sequences at the vector level, we can identify subtasks with incomplete task decomposition and iterate on them multiple times to ultimately generate executable machine task sequences.The robot is guided through these task sequences to complete tasks of higher complexity. With this architecture, we implement the process of natural language control of robots to perform complex tasks, and successfully address the challenge of multi agent execution of open tasks in open scenarios and the problem of task decomposition.
Abstract:Despite the remarkable code generation abilities of large language models LLMs, they still face challenges in complex task handling. Robot development, a highly intricate field, inherently demands human involvement in task allocation and collaborative teamwork . To enhance robot development, we propose an innovative automated collaboration framework inspired by real-world robot developers. This framework employs multiple LLMs in distinct roles analysts, programmers, and testers. Analysts delve deep into user requirements, enabling programmers to produce precise code, while testers fine-tune the parameters based on user feedback for practical robot application. Each LLM tackles diverse, critical tasks within the development process. Clear collaboration rules emulate real world teamwork among LLMs. Analysts, programmers, and testers form a cohesive team overseeing strategy, code, and parameter adjustments . Through this framework, we achieve complex robot development without requiring specialized knowledge, relying solely on non experts participation.
Abstract:Graph Neural Networks (GNNs) have received increasing attention due to their ability to learn from graph-structured data. To open the black-box of these deep learning models, post-hoc instance-level explanation methods have been proposed to understand GNN predictions. These methods seek to discover substructures that explain the prediction behavior of a trained GNN. In this paper, we show analytically that for a large class of explanation tasks, conventional approaches, which are based on the principle of graph information bottleneck (GIB), admit trivial solutions that do not align with the notion of explainability. Instead, we argue that a modified GIB principle may be used to avoid the aforementioned trivial solutions. We further introduce a novel factorized explanation model with theoretical performance guarantees. The modified GIB is used to analyze the structural properties of the proposed factorized explainer. We conduct extensive experiments on both synthetic and real-world datasets to validate the effectiveness of our proposed factorized explainer over existing approaches.