Abstract:Deep learning-based hyperspectral image (HSI) super-resolution, which aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs), has attracted lots of attention. However, neural networks require large amounts of training data, hindering their application in real-world scenarios. In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimizes and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion. Our framework is sample-aware and optimizes an augmentor network and two downsampling networks jointly by adversarial learning so that we can learn more robust downsampling networks for training the upsampling network. Extensive experiments on two public classical hyperspectral datasets demonstrate the effectiveness of our ADASR compared to the state-of-the-art methods.
Abstract:Sparse deep neural networks have shown their advantages over dense models with fewer parameters and higher computational efficiency. Here we demonstrate constraining the synaptic weights on unit Lp-sphere enables the flexibly control of the sparsity with p and improves the generalization ability of neural networks. Firstly, to optimize the synaptic weights constrained on unit Lp-sphere, the parameter optimization algorithm, Lp-spherical gradient descent (LpSGD) is derived from the augmented Empirical Risk Minimization condition, which is theoretically proved to be convergent. To understand the mechanism of how p affects Hoyer's sparsity, the expectation of Hoyer's sparsity under the hypothesis of gamma distribution is given and the predictions are verified at various p under different conditions. In addition, the "semi-pruning" and threshold adaptation are designed for topology evolution to effectively screen out important connections and lead the neural networks converge from the initial sparsity to the expected sparsity. Our approach is validated by experiments on benchmark datasets covering a wide range of domains. And the theoretical analysis pave the way to future works on training sparse neural networks with constrained optimization.