Abstract:Modern vehicles are equipped with multiple information-collection devices such as sensors and cameras, continuously generating a large volume of raw data. Accurately predicting the trajectories of neighboring vehicles is a vital component in understanding the complex driving environment. Yet, training trajectory prediction models is challenging in two ways. Processing the large-scale data is computation-intensive. Moreover, easy-medium driving scenarios often overwhelmingly dominate the dataset, leaving challenging driving scenarios such as dense traffic under-represented. For example, in the Argoverse motion prediction dataset, there are very few instances with $\ge 50$ agents, while scenarios with $10 \thicksim 20$ agents are far more common. In this paper, to mitigate data redundancy in the over-represented driving scenarios and to reduce the bias rooted in the data scarcity of complex ones, we propose a novel data-efficient training method based on coreset selection. This method strategically selects a small but representative subset of data while balancing the proportions of different scenario difficulties. To the best of our knowledge, we are the first to introduce a method capable of effectively condensing large-scale trajectory dataset, while achieving a state-of-the-art compression ratio. Notably, even when using only 50% of the Argoverse dataset, the model can be trained with little to no decline in performance. Moreover, the selected coreset maintains excellent generalization ability.
Abstract:Autonomous driving has garnered significant attention as a key research area within artificial intelligence. In the context of autonomous driving scenarios, the varying physical locations of objects correspond to different levels of danger. However, conventional evaluation criteria for automatic driving object detection often overlook the crucial aspect of an object's physical location, leading to evaluation results that may not accurately reflect the genuine threat posed by the object to the autonomous driving vehicle. To enhance the safety of autonomous driving, this paper introduces a novel evaluation criterion based on physical location information, termed PLoc. This criterion transcends the limitations of traditional criteria by acknowledging that the physical location of pedestrians in autonomous driving scenarios can provide valuable safety-related information. Furthermore, this paper presents a newly re-annotated dataset (ApolloScape-R) derived from ApolloScape. ApolloScape-R involves the relabeling of pedestrians based on the significance of their physical location. The dataset is utilized to assess the performance of various object detection models under the proposed PLoc criterion. Experimental results demonstrate that the average accuracy of all object detection models in identifying a person situated in the travel lane of an autonomous vehicle is lower than that for a person on a sidewalk. The dataset is publicly available at https://github.com/lnyrlyed/ApolloScape-R.git