Abstract:Online programming videos, including tutorials and streamcasts, are widely popular and contain a wealth of expert knowledge. However, effectively utilizing these resources to achieve targeted learning goals can be challenging. Unlike direct tutoring, video content lacks tailored guidance based on individual learning paces, personalized feedback, and interactive engagement necessary for support and monitoring. Our work transforms programming videos into one-on-one tutoring experiences using the cognitive apprenticeship framework. Tutorly, developed as a JupyterLab Plugin, allows learners to (1) set personalized learning goals, (2) engage in learning-by-doing through a conversational LLM-based mentor agent, (3) receive guidance and feedback based on a student model that steers the mentor moves. In a within-subject study with 16 participants learning exploratory data analysis from a streamcast, Tutorly significantly improved their performance from 61.9% to 76.6% based on a post-test questionnaire. Tutorly demonstrates the potential for enhancing programming video learning experiences with LLM and learner modeling.
Abstract:In our era of rapid technological advancement, the research landscape for writing assistants has become increasingly fragmented across various research communities. We seek to address this challenge by proposing a design space as a structured way to examine and explore the multidimensional space of intelligent and interactive writing assistants. Through a large community collaboration, we explore five aspects of writing assistants: task, user, technology, interaction, and ecosystem. Within each aspect, we define dimensions (i.e., fundamental components of an aspect) and codes (i.e., potential options for each dimension) by systematically reviewing 115 papers. Our design space aims to offer researchers and designers a practical tool to navigate, comprehend, and compare the various possibilities of writing assistants, and aid in the envisioning and design of new writing assistants.