Abstract:We introduce CogGen, a learner-centered AI architecture that transforms programming videos into interactive, adaptive learning experiences by integrating student modeling with generative AI tutoring based on the Cognitive Apprenticeship framework. The architecture consists of three components: (1) video segmentation by learning goals, (2) a conversational tutoring engine applying Cognitive Apprenticeship strategies, and (3) a student model using Bayesian Knowledge Tracing to adapt instruction. Our technical evaluation demonstrates effective video segmentation accuracy and strong pedagogical alignment across knowledge, method, action, and interaction layers. Ablation studies confirm the necessity of each component in generating effective guidance. This work advances AI-powered tutoring by bridging structured student modeling with interactive AI conversations, offering a scalable approach to enhancing video-based programming education.
Abstract:The ubiquity of technologies like ChatGPT has raised concerns about their impact on student writing, particularly regarding reduced learner agency and superficial engagement with content. While standalone chat-based LLMs often produce suboptimal writing outcomes, evidence suggests that purposefully designed AI writing support tools can enhance the writing process. This paper investigates how different AI support approaches affect writers' sense of agency and depth of knowledge transformation. Through a randomized control trial with 90 undergraduate students, we compare three conditions: (1) a chat-based LLM writing assistant, (2) an integrated AI writing tool to support diverse subprocesses, and (3) a standard writing interface (control). Our findings demonstrate that, among AI-supported conditions, students using the integrated AI writing tool exhibited greater agency over their writing process and engaged in deeper knowledge transformation overall. These results suggest that thoughtfully designed AI writing support targeting specific aspects of the writing process can help students maintain ownership of their work while facilitating improved engagement with content.
Abstract:Online programming videos, including tutorials and streamcasts, are widely popular and contain a wealth of expert knowledge. However, effectively utilizing these resources to achieve targeted learning goals can be challenging. Unlike direct tutoring, video content lacks tailored guidance based on individual learning paces, personalized feedback, and interactive engagement necessary for support and monitoring. Our work transforms programming videos into one-on-one tutoring experiences using the cognitive apprenticeship framework. Tutorly, developed as a JupyterLab Plugin, allows learners to (1) set personalized learning goals, (2) engage in learning-by-doing through a conversational LLM-based mentor agent, (3) receive guidance and feedback based on a student model that steers the mentor moves. In a within-subject study with 16 participants learning exploratory data analysis from a streamcast, Tutorly significantly improved their performance from 61.9% to 76.6% based on a post-test questionnaire. Tutorly demonstrates the potential for enhancing programming video learning experiences with LLM and learner modeling.
Abstract:In our era of rapid technological advancement, the research landscape for writing assistants has become increasingly fragmented across various research communities. We seek to address this challenge by proposing a design space as a structured way to examine and explore the multidimensional space of intelligent and interactive writing assistants. Through a large community collaboration, we explore five aspects of writing assistants: task, user, technology, interaction, and ecosystem. Within each aspect, we define dimensions (i.e., fundamental components of an aspect) and codes (i.e., potential options for each dimension) by systematically reviewing 115 papers. Our design space aims to offer researchers and designers a practical tool to navigate, comprehend, and compare the various possibilities of writing assistants, and aid in the envisioning and design of new writing assistants.