Abstract:An early warning of future system failure is essential for conducting predictive maintenance and enhancing system availability. This paper introduces a three-step framework for assessing system health to predict imminent system breakdowns. First, the Gaussian Derivative Change-Point Detection (GDCPD) algorithm is proposed for detecting changes in the high-dimensional feature space. GDCPD conducts a multivariate Change-Point Detection (CPD) by implementing Gaussian derivative processes for identifying change locations on critical system features, as these changes eventually will lead to system failure. To assess the significance of these changes, Weighted Mahalanobis Distance (WMD) is applied in both offline and online analyses. In the offline setting, WMD helps establish a threshold that determines significant system variations, while in the online setting, it facilitates real-time monitoring, issuing alarms for potential future system breakdowns. Utilizing the insights gained from the GDCPD and monitoring scheme, Long Short-Term Memory (LSTM) network is then employed to estimate the Remaining Useful Life (RUL) of the system. The experimental study of a real-world system demonstrates the effectiveness of the proposed methodology in accurately forecasting system failures well before they occur. By integrating CPD with real-time monitoring and RUL prediction, this methodology significantly advances system health monitoring and early warning capabilities.
Abstract:This paper presents a novel Integer Programming (IP) approach for discovering the Markov Equivalent Class (MEC) of Bayesian Networks (BNs) through observational data. The MEC-IP algorithm utilizes a unique clique-focusing strategy and Extended Maximal Spanning Graphs (EMSG) to streamline the search for MEC, thus overcoming the computational limitations inherent in other existing algorithms. Our numerical results show that not only a remarkable reduction in computational time is achieved by our algorithm but also an improvement in causal discovery accuracy is seen across diverse datasets. These findings underscore this new algorithm's potential as a powerful tool for researchers and practitioners in causal discovery and BNSL, offering a significant leap forward toward the efficient and accurate analysis of complex data structures.
Abstract:To enhance the generalization of machine learning models to unseen data, techniques such as dropout, weight decay ($L_2$ regularization), and noise augmentation are commonly employed. While regularization methods (i.e., dropout and weight decay) are geared toward adjusting model parameters to prevent overfitting, data augmentation increases the diversity of the input training set, a method purported to improve accuracy and calibration error. In this paper, we investigate the impact of each of these techniques on the parameter space of neural networks, with the goal of understanding how they alter the weight landscape in transfer learning scenarios. To accomplish this, we employ Random Matrix Theory to analyze the eigenvalue distributions of pre-trained models, fine-tuned using these techniques but using different levels of data diversity, for the same downstream tasks. We observe that diverse data influences the weight landscape in a similar fashion as dropout. Additionally, we compare commonly used data augmentation methods with synthetic data created by generative models. We conclude that synthetic data can bring more diversity into real input data, resulting in a better performance on out-of-distribution test instances.
Abstract:As machine learning models continue to swiftly advance, calibrating their performance has become a major concern prior to practical and widespread implementation. Most existing calibration methods often negatively impact model accuracy due to the lack of diversity of validation data, resulting in reduced generalizability. To address this, we propose a calibration method that incorporates synthetic data without compromising accuracy. We derive the expected calibration error (ECE) bound using the Probably Approximately Correct (PAC) learning framework. Large language models (LLMs), known for their ability to mimic real data and generate text with mixed class labels, are utilized as a synthetic data generation strategy to lower the ECE bound and improve model accuracy on real test data. Additionally, we propose data generation mechanisms for efficient calibration. Testing our method on four different natural language processing tasks, we observed an average up to 34\% increase in accuracy and 33\% decrease in ECE.
Abstract:Change-point detection (CPD) is crucial for identifying abrupt shifts in data, which influence decision-making and efficient resource allocation across various domains. To address the challenges posed by the costly and time-intensive data acquisition in CPD, we introduce the Derivative-Aware Change Detection (DACD) method. It leverages the derivative process of a Gaussian process (GP) for Active Learning (AL), aiming to pinpoint change-point locations effectively. DACD balances the exploitation and exploration of derivative processes through multiple data acquisition functions (AFs). By utilizing GP derivative mean and variance as criteria, DACD sequentially selects the next sampling data point, thus enhancing algorithmic efficiency and ensuring reliable and accurate results. We investigate the effectiveness of DACD method in diverse scenarios and show it outperforms other active learning change-point detection approaches.
Abstract:Federated learning makes it possible for all parties with data isolation to train the model collaboratively and efficiently while satisfying privacy protection. To obtain a high-quality model, an incentive mechanism is necessary to motivate more high-quality workers with data and computing power. The existing incentive mechanisms are applied in offline scenarios, where the task publisher collects all bids and selects workers before the task. However, it is practical that different workers arrive online in different orders before or during the task. Therefore, we propose a reverse auction-based online incentive mechanism for horizontal federated learning with budget constraint. Workers submit bids when they arrive online. The task publisher with a limited budget leverages the information of the arrived workers to decide on whether to select the new worker. Theoretical analysis proves that our mechanism satisfies budget feasibility, computational efficiency, individual rationality, consumer sovereignty, time truthfulness, and cost truthfulness with a sufficient budget. The experimental results show that our online mechanism is efficient and can obtain high-quality models.
Abstract:Federated learning trains models across devices with distributed data, while protecting the privacy and obtaining a model similar to that of centralized ML. A large number of workers with data and computing power are the foundation of federal learning. However, the inevitable costs prevent self-interested workers from serving for free. Moreover, due to data isolation, task publishers lack effective methods to select, evaluate and pay reliable workers with high-quality data. Therefore, we design an auction-based incentive mechanism for horizontal federated learning with reputation and contribution measurement. By designing a reasonable method of measuring contribution, we establish the reputation of workers, which is easy to decline and difficult to improve. Through reverse auctions, workers bid for tasks, and the task publisher selects workers combining reputation and bid price. With the budget constraint, winning workers are paid based on performance. We proved that our mechanism satisfies the individual rationality of the honest worker, budget feasibility, truthfulness, and computational efficiency.
Abstract:Recurrence data arise from multi-disciplinary domains spanning reliability, cyber security, healthcare, online retailing, etc. This paper investigates an additive-tree-based approach, known as Boost-R (Boosting for Recurrence Data), for recurrent event data with both static and dynamic features. Boost-R constructs an ensemble of gradient boosted additive trees to estimate the cumulative intensity function of the recurrent event process, where a new tree is added to the ensemble by minimizing the regularized L2 distance between the observed and predicted cumulative intensity. Unlike conventional regression trees, a time-dependent function is constructed by Boost-R on each tree leaf. The sum of these functions, from multiple trees, yields the ensemble estimator of the cumulative intensity. The divide-and-conquer nature of tree-based methods is appealing when hidden sub-populations exist within a heterogeneous population. The non-parametric nature of regression trees helps to avoid parametric assumptions on the complex interactions between event processes and features. Critical insights and advantages of Boost-R are investigated through comprehensive numerical examples. Datasets and computer code of Boost-R are made available on GitHub. To our best knowledge, Boost-R is the first gradient boosted additive-tree-based approach for modeling large-scale recurrent event data with both static and dynamic feature information.
Abstract:Knowledge representation learning has received a lot of attention in the past few years. The success of existing methods heavily relies on the quality of knowledge graphs. The entities with few triplets tend to be learned with less expressive power. Fortunately, there are many knowledge graphs constructed from various sources, the representations of which could contain much information. We propose an adversarial embedding transfer network ATransN, which transfers knowledge from one or more teacher knowledge graphs to a target one through an aligned entity set without explicit data leakage. Specifically, we add soft constraints on aligned entity pairs and neighbours to the existing knowledge representation learning methods. To handle the problem of possible distribution differences between teacher and target knowledge graphs, we introduce an adversarial adaption module. The discriminator of this module evaluates the degree of consistency between the embeddings of an aligned entity pair. The consistency score is then used as the weights of soft constraints. It is not necessary to acquire the relations and triplets in teacher knowledge graphs because we only utilize the entity representations. Knowledge graph completion results show that ATransN achieves better performance against baselines without transfer on three datasets, CN3l, WK3l, and DWY100k. The ablation study demonstrates that ATransN can bring steady and consistent improvement in different settings. The extension of combining other knowledge graph embedding algorithms and the extension with three teacher graphs display the promising generalization of the adversarial transfer network.
Abstract:Knowledge graph embedding aims at modeling entities and relations with low-dimensional vectors. Most previous methods require that all entities should be seen during training, which is unpractical for real-world knowledge graphs with new entities emerging on a daily basis. Recent efforts on this issue suggest training a neighborhood aggregator in conjunction with the conventional entity and relation embeddings, which may help embed new entities inductively via their existing neighbors. However, their neighborhood aggregators neglect the unordered and unequal natures of an entity's neighbors. To this end, we summarize the desired properties that may lead to effective neighborhood aggregators. We also introduce a novel aggregator, namely, Logic Attention Network (LAN), which addresses the properties by aggregating neighbors with both rules- and network-based attention weights. By comparing with conventional aggregators on two knowledge graph completion tasks, we experimentally validate LAN's superiority in terms of the desired properties.