Abstract:Objective: Blood transfusions, crucial in managing anemia and coagulopathy in ICU settings, require accurate prediction for effective resource allocation and patient risk assessment. However, existing clinical decision support systems have primarily targeted a particular patient demographic with unique medical conditions and focused on a single type of blood transfusion. This study aims to develop an advanced machine learning-based model to predict the probability of transfusion necessity over the next 24 hours for a diverse range of non-traumatic ICU patients. Methods: We conducted a retrospective cohort study on 72,072 adult non-traumatic ICU patients admitted to a high-volume US metropolitan academic hospital between 2016 and 2020. We developed a meta-learner and various machine learning models to serve as predictors, training them annually with four-year data and evaluating on the fifth, unseen year, iteratively over five years. Results: The experimental results revealed that the meta-model surpasses the other models in different development scenarios. It achieved notable performance metrics, including an Area Under the Receiver Operating Characteristic (AUROC) curve of 0.97, an accuracy rate of 0.93, and an F1-score of 0.89 in the best scenario. Conclusion: This study pioneers the use of machine learning models for predicting blood transfusion needs in a diverse cohort of critically ill patients. The findings of this evaluation confirm that our model not only predicts transfusion requirements effectively but also identifies key biomarkers for making transfusion decisions.
Abstract:As a subset of machine learning, meta-learning, or learning to learn, aims at improving the model's capabilities by employing prior knowledge and experience. A meta-learning paradigm can appropriately tackle the conventional challenges of traditional learning approaches, such as insufficient number of samples, domain shifts, and generalization. These unique characteristics position meta-learning as a suitable choice for developing influential solutions in various healthcare contexts, where the available data is often insufficient, and the data collection methodologies are different. This survey discusses meta-learning broad applications in the healthcare domain to provide insight into how and where it can address critical healthcare challenges. We first describe the theoretical foundations and pivotal methods of meta-learning. We then divide the employed meta-learning approaches in the healthcare domain into two main categories of multi/single-task learning and many/few-shot learning and survey the studies. Finally, we highlight the current challenges in meta-learning research, discuss the potential solutions and provide future perspectives on meta-learning in healthcare.
Abstract:A novel problem of improving causal effect estimation accuracy with the help of knowledge transfer under the same covariate (or feature) space setting, i.e., homogeneous transfer learning (TL), is studied, referred to as the Transfer Causal Learning (TCL) problem. While most recent efforts in adapting TL techniques to estimate average causal effect (ACE) have been focused on the heterogeneous covariate space setting, those methods are inadequate for tackling the TCL problem since their algorithm designs are based on the decomposition into shared and domain-specific covariate spaces. To address this issue, we propose a generic framework called $\ell_1$-TCL, which incorporates $\ell_1$ regularized TL for nuisance parameter estimation and downstream plug-in ACE estimators, including outcome regression, inverse probability weighted, and doubly robust estimators. Most importantly, with the help of Lasso for high-dimensional regression, we establish non-asymptotic recovery guarantees for the generalized linear model (GLM) under the sparsity assumption for the proposed $\ell_1$-TCL. From an empirical perspective, $\ell_1$-TCL is a generic learning framework that can incorporate not only GLM but also many recently developed non-parametric methods, which can enhance robustness to model mis-specification. We demonstrate this empirical benefit through extensive numerical simulation by incorporating both GLM and recent neural network-based approaches in $\ell_1$-TCL, which shows improved performance compared with existing TL approaches for ACE estimation. Furthermore, our $\ell_1$-TCL framework is subsequently applied to a real study, revealing that vasopressor therapy could prevent 28-day mortality within septic patients, which all baseline approaches fail to show.
Abstract:Sepsis is a deadly condition affecting many patients in the hospital. Recent studies have shown that patients diagnosed with sepsis have significant mortality and morbidity, resulting from the body's dysfunctional host response to infection. Clinicians often rely on the use of Sequential Organ Failure Assessment (SOFA), Systemic Inflammatory Response Syndrome (SIRS), and the Modified Early Warning Score (MEWS) to identify early signs of clinical deterioration requiring further work-up and treatment. However, many of these tools are manually computed and were not designed for automated computation. There have been different methods used for developing sepsis onset models, but many of these models must be trained on a sufficient number of patient observations in order to form accurate sepsis predictions. Additionally, the accurate annotation of patients with sepsis is a major ongoing challenge. In this paper, we propose the use of Active Learning Recurrent Neural Networks (ALRts) for short temporal horizons to improve the prediction of irregularly sampled temporal events such as sepsis. We show that an active learning RNN model trained on limited data can form robust sepsis predictions comparable to models using the entire training dataset.